These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19639485)

  • 21. Investigating full-field deformation of planar soft tissue under simple-shear tests.
    Guo DL; Chen BS; Liou NS
    J Biomech; 2007; 40(5):1165-70. PubMed ID: 17137584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment.
    Cansız FB; Dal H; Kaliske M
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur.
    Yang H; Ma X; Guo T
    Med Eng Phys; 2010 Jul; 32(6):553-60. PubMed ID: 20435503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.
    Zhao R; Wyss K; Simmons CA
    J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing cardiac material parameters with a genetic algorithm.
    Nair AU; Taggart DG; Vetter FJ
    J Biomech; 2007; 40(7):1646-50. PubMed ID: 17056049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A variational constitutive model for soft biological tissues.
    El Sayed T; Mota A; Fraternali F; Ortiz M
    J Biomech; 2008; 41(7):1458-66. PubMed ID: 18423649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformation measurements and material property estimation of mouse carotid artery using a microstructure-based constitutive model.
    Ning J; Xu S; Wang Y; Lessner SM; Sutton MA; Anderson K; Bischoff JE
    J Biomech Eng; 2010 Dec; 132(12):121010. PubMed ID: 21142324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model.
    Weinberg EJ; Kaazempur Mofrad MR
    J Biomech; 2007; 40(3):705-11. PubMed ID: 16574127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Modeling of Healthy Myocardium in Diastole.
    Nikou A; Dorsey SM; McGarvey JR; Gorman JH; Burdick JA; Pilla JJ; Gorman RC; Wenk JF
    Ann Biomed Eng; 2016 Apr; 44(4):980-92. PubMed ID: 26215308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of the finite-element method to ventricular mechanics.
    Yin FC
    Crit Rev Biomed Eng; 1985; 12(4):311-42. PubMed ID: 3893884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential effects of pre-tension on shear wave propagation in elastic media with different boundary conditions as measured by magnetic resonance elastography and finite element modeling.
    Chen Q; Ringleb SI; Manduca A; Ehman RL; An KN
    J Biomech; 2006; 39(8):1428-34. PubMed ID: 15964007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of a constitutive relation for passive myocardium: II. Parameter estimation.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability analysis of second- and fourth-order finite-difference modelling of wave propagation in orthotropic media.
    Veres IA
    Ultrasonics; 2010 Mar; 50(3):431-8. PubMed ID: 19913266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved identifiability of myocardial material parameters by an energy-based cost function.
    Nasopoulou A; Shetty A; Lee J; Nordsletten D; Rinaldi CA; Lamata P; Niederer S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):971-988. PubMed ID: 28188386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.