These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19639486)

  • 1. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia.
    Johnston PR
    Comput Methods Biomech Biomed Engin; 2010; 13(2):157-70. PubMed ID: 19639486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of ST segment changes during subendocardial ischemia using a realistic 3-D cardiac geometry.
    MacLachlan MC; Sundnes J; Lines GT
    IEEE Trans Biomed Eng; 2005 May; 52(5):799-807. PubMed ID: 15887529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of simplifying assumptions in the bidomain model of cardiac tissue: application to ST segment shifts during partial ischaemia.
    Johnston PR
    Math Biosci; 2005 Nov; 198(1):97-118. PubMed ID: 16061262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of conductivity values on ST segment shift in subendocardial ischaemia.
    Johnston PR; Kilpatrick D
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):150-8. PubMed ID: 12665028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia.
    Johnston PR; Kilpatrick D; Li CY
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1366-76. PubMed ID: 11759918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cylindrical model for studying subendocardial ischaemia in the left ventricle.
    Johnston PR
    Math Biosci; 2003 Nov; 186(1):43-61. PubMed ID: 14527746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between models of partial thickness and subendocardial ischaemia in terms of sensitivity analyses of ST-segment epicardial potential distributions.
    Johnston BM; Johnston PR
    Math Biosci; 2019 Dec; 318():108273. PubMed ID: 31647934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ST segment depression: the possible role of global repolarization dynamics.
    Hopenfeld B
    Biomed Eng Online; 2007 Feb; 6():6. PubMed ID: 17291348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the most significant input parameters in models of subendocardial ischaemia and their effect on ST segment epicardial potential distributions.
    Johnston BM; Johnston PR
    Comput Biol Med; 2018 Apr; 95():75-89. PubMed ID: 29459293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations.
    Johnston BM; Johnston PR; Kilpatrick D
    Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subendocardial and subepicardial pressure-flow relations in the rat heart in diastolic and systolic arrest.
    Lamberts RR; Willemsen MJ; Sipkema P; Westerhof N
    J Biomech; 2004 May; 37(5):697-707. PubMed ID: 15046999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nondimensional formulation of the passive bidomain equation.
    Johnston PR
    J Electrocardiol; 2011; 44(2):184-8. PubMed ID: 21255793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitivity study of conductivity values in the passive bidomain equation.
    Johnston PR
    Math Biosci; 2011 Aug; 232(2):142-50. PubMed ID: 21624377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute subendocardial ischaemia leads to homogenous prolongation in ventricular repolarization.
    Ma LL; Wang LX
    Med Hypotheses; 2007; 68(1):137-9. PubMed ID: 16904836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How ischaemic region shape affects ST potentials in models of cardiac tissue.
    Barnes JP; Johnston PR
    Math Biosci; 2012 Oct; 239(2):213-21. PubMed ID: 22698893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of spectral methods in bidomain studies.
    Trayanova N; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(3-4):255-77. PubMed ID: 1478093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of boundary conditions on epicardial potential distributions.
    Barnes JP; Johnston PR
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1031-1037. PubMed ID: 28521515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity analysis of ST-segment epicardial potentials arising from changes in ischaemic region conductivities in early and late stage ischaemia.
    Johnston BM; Johnston PR
    Comput Biol Med; 2018 Nov; 102():288-299. PubMed ID: 29914695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia.
    Johnston BM; Coveney S; Chang ETY; Johnston PR; Clayton RH
    Med Biol Eng Comput; 2018 May; 56(5):761-780. PubMed ID: 28933043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches.
    Xia L; Zhang Y; Zhang H; Wei Q; Liu F; Crozier S
    Physiol Meas; 2006 Nov; 27(11):1125-42. PubMed ID: 17028406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.