These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19639486)

  • 41. Filament behavior in a computational model of ventricular fibrillation in the canine heart.
    Clayton RH; Holden AV
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A computationally efficient method for determining the size and location of myocardial ischemia.
    Ruud TS; Nielsen BF; Lysaker M; Sundnes J
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):263-72. PubMed ID: 19342326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduced-order preconditioning for bidomain simulations.
    Deo M; Bauer S; Plank G; Vigmond E
    IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization: implications for biventricular pacing.
    Fish JM; Di Diego JM; Nesterenko V; Antzelevitch C
    Circulation; 2004 May; 109(17):2136-42. PubMed ID: 15078801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Meshfree implementation of individualized active cardiac dynamics.
    Wong KC; Wang L; Zhang H; Liu H; Shi P
    Comput Med Imaging Graph; 2010 Jan; 34(1):91-103. PubMed ID: 19501485
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ST elevation or depression in subendocardial ischemia?
    Potse M; LeBlanc AR; Cardinal R; Vinet A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3899-902. PubMed ID: 17945814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An electromechanical model of the heart for image analysis and simulation.
    Sermesant M; Delingette H; Ayache N
    IEEE Trans Med Imaging; 2006 May; 25(5):612-25. PubMed ID: 16689265
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2016 Oct; 280():71-86. PubMed ID: 27545966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wavelet time entropy, T wave morphology and myocardial ischemia.
    Lemire D; Pharand C; Rajaonah JC; Dubé B; LeBlanc AR
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):967-70. PubMed ID: 10916269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solving the cardiac bidomain equations for discontinuous conductivities.
    Austin TM; Trew ML; Pullan AJ
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1265-72. PubMed ID: 16830931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity.
    Geneser SE; Kirby RM; MacLeod RS
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of conductivity on ST-segment epicardial potentials arising from subendocardial ischemia.
    Hopenfeld B; Stinstra JG; MacLeod RS
    Ann Biomed Eng; 2005 Jun; 33(6):751-63. PubMed ID: 16078615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia?
    Johnston BM; Johnston PR
    Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Computer simulation for localization and extensiveness of myocardial ischemia].
    Baum OV; Voloshin VI; Popov LA
    Biofizika; 2014; 59(5):999-1005. PubMed ID: 25730986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The forward and inverse problems of electrocardiography.
    Gulrajani RM
    IEEE Eng Med Biol Mag; 1998; 17(5):84-101, 122. PubMed ID: 9770610
    [No Abstract]   [Full Text] [Related]  

  • 60. Stiffness analysis of cardiac electrophysiological models.
    Spiteri RJ; Dean RC
    Ann Biomed Eng; 2010 Dec; 38(12):3592-604. PubMed ID: 20582476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.