These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19639486)

  • 61. An analytical method for the determination of along-fibre to cross-fibre elastic modulus ratio in ventricular myocardium--a feasibility study.
    Yettram AL; Beecham MC
    Med Eng Phys; 1998 Mar; 20(2):103-8. PubMed ID: 9679228
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework.
    Corrias A; Pathmanathan P; Gavaghan DJ; Buist ML
    Integr Biol (Camb); 2012 Feb; 4(2):192-201. PubMed ID: 22222297
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):15-25. PubMed ID: 9444836
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Approximate solutions for certain bidomain problems in electrocardiography.
    Johnston PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041904. PubMed ID: 18999452
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Algebraic multigrid preconditioner for the cardiac bidomain model.
    Plank G; Liebmann M; Weber dos Santos R; Vigmond EJ; Haase G
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):585-96. PubMed ID: 17405366
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of magnetocardiography and electrocardiography in diagnosis of cardiac ischemia: a simulation study.
    Yang F; Patterson RP
    Int J Cardiol; 2013 Oct; 168(3):3103-6. PubMed ID: 23651820
    [No Abstract]   [Full Text] [Related]  

  • 67. Simulation of cardiac electrophysiology on next-generation high-performance computers.
    Bordas R; Carpentieri B; Fotia G; Maggio F; Nobes R; Pitt-Francis J; Southern J
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1895):1951-69. PubMed ID: 19380320
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Localisation of myocardial ischaemia from the magnetocardiogram using current density reconstruction method: computer simulation study.
    Killmann R; Jaros GG; Wach P; Graumann R; Moshage W; Renhardt M; Fleischmann PH
    Med Biol Eng Comput; 1995 Sep; 33(5):643-51. PubMed ID: 8523905
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Role of Reduced Left Ventricular, Systolic Blood Volumes in ST Segment Potentials Overlying Diseased Tissue of the Ischemic Heart.
    Burton BM; Tate JD; Good W; Macleod RS
    Comput Cardiol (2010); 2016 Sep; 43():209-212. PubMed ID: 28451591
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Determining six cardiac conductivities from realistically large datasets.
    Johnston BM; Johnston PR
    Math Biosci; 2015 Aug; 266():15-22. PubMed ID: 26048188
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modelling passive cardiac conductivity during ischaemia.
    Stinstra JG; Shome S; Hopenfeld B; MacLeod RS
    Med Biol Eng Comput; 2005 Nov; 43(6):776-82. PubMed ID: 16594306
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterisation of acute myocardial ischaemia in a canine model based on principal component analysis of unipolar endocardial electrograms.
    Schwartzman A; Wolf T; Gepstein L; Hayam G; Lessick J; Reisfeld D; Schwartz Y; Uretzky G; Ben-Haim SA
    Med Biol Eng Comput; 2001 Sep; 39(5):571-8. PubMed ID: 11712654
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A simple model for demonstration of STT-changes in ECG.
    Wohlfart B
    Eur Heart J; 1987 Apr; 8(4):409-16. PubMed ID: 3609036
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Repolarization gradients derived by subtraction of monophasic action potential recordings in the human heart. Studies incorporating altered mechanical loading and ischemia.
    Taggart P; Sutton P; Pugsley W; Swanton H
    J Electrocardiol; 1995; 28 Suppl():156-61. PubMed ID: 8656105
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transverse isotropic modelling of left-ventricle passive filling: Mechanical characterization for epicardial biomaterial manufacturing.
    Jehl JP; Dan P; Voignier A; Tran N; Bastogne T; Maureira P; Cleymand F
    J Mech Behav Biomed Mater; 2021 Jul; 119():104492. PubMed ID: 33892336
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Animal experiment study of the design of microelectrodes for selective detection of epicardial potassium ion activities].
    Vogt S; Troitzsch D; Späth S; Moosdorf R
    Biomed Tech (Berl); 1998 Oct; 43(10):293-8. PubMed ID: 9846446
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Approaches for determining cardiac bidomain conductivity values: progress and challenges.
    Johnston BM; Johnston PR
    Med Biol Eng Comput; 2020 Dec; 58(12):2919-2935. PubMed ID: 33089458
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology.
    Corrado C; Lassoued J; Mahjoub M; Zemzemi N
    Math Biosci; 2016 Feb; 272():81-91. PubMed ID: 26723278
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The secrets to the success of the Rush-Larsen method and its generalizations.
    Marsh ME; Ziaratgahi ST; Spiteri RJ
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2506-15. PubMed ID: 22736685
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rabbit-specific computational modelling of ventricular cell electrophysiology: Using populations of models to explore variability in the response to ischemia.
    Gemmell P; Burrage K; Rodríguez B; Quinn TA
    Prog Biophys Mol Biol; 2016 Jul; 121(2):169-84. PubMed ID: 27320382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.