BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19639567)

  • 1. 2-D Difference in gel electrophoresis combined with Pro-Q Diamond staining: a successful approach for the identification of kinase/phosphatase targets.
    Orsatti L; Forte E; Tomei L; Caterino M; Pessi A; Talamo F
    Electrophoresis; 2009 Jul; 30(14):2469-76. PubMed ID: 19639567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteome profile of human liver Chang's cell based on 2-DE with fluorescence staining and MALDI-TOF/TOF-MS.
    Liu J; Cai Y; Wang J; Zhou Q; Yang B; Lu Z; Jiao L; Zhang D; Sui S; Jiang Y; Ying W; Qian X
    Electrophoresis; 2007 Dec; 28(23):4348-58. PubMed ID: 17987627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of two-dimensional gel analysis to identification and characterization of tyrosine phosphorylated substrates for growth factor receptors.
    Hansen K; Møller JV
    Electrophoresis; 1993; 14(1-2):112-26. PubMed ID: 7681772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of two-dimensional gel-separated proteins using sequential staining.
    Wu J; Lenchik NJ; Pabst MJ; Solomon SS; Shull J; Gerling IC
    Electrophoresis; 2005 Jan; 26(1):225-37. PubMed ID: 15624177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3.
    Forte E; Orsatti L; Talamo F; Barbato G; De Francesco R; Tomei L
    Biochim Biophys Acta; 2008 Feb; 1783(2):334-44. PubMed ID: 18078820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-resolution two dimensional Gel- and Pro-Q DPS-based proteomics workflow for phosphoprotein identification and quantitative profiling.
    Agrawal GK; Thelen JJ
    Methods Mol Biol; 2009; 527():3-19, ix. PubMed ID: 19241001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3.
    Peng L; Jin G; Wang L; Guo J; Meng L; Shou C
    Biochem Biophys Res Commun; 2006 Mar; 342(1):179-83. PubMed ID: 16472776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of tyrosine phosphorylated proteins by combination of immunoaffinity enrichment, two-dimensional difference gel electrophoresis and fluorescent Western blotting.
    Bergström Lind S; Hagner-McWhirter S; Elfineh L; Molin M; Jorsback A; Ohman J; Pettersson U
    Biochem Biophys Res Commun; 2010 Oct; 401(4):581-5. PubMed ID: 20888324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement of phosphatase of regenerating liver-3 for the nucleolar localization of nucleolin during the progression of colorectal carcinoma.
    Semba S; Mizuuchi E; Yokozaki H
    Cancer Sci; 2010 Oct; 101(10):2254-61. PubMed ID: 20860603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrus in vivo.
    Chardonnet S; Le Marechal P; Cheval H; Le Caer JP; Decottignies P; Laprevote O; Laroche S; Davis S
    Eur J Neurosci; 2008 Jun; 27(11):2985-98. PubMed ID: 18588538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PRL-3: a metastasis-associated phosphatase in search of a function.
    Bessette DC; Wong PC; Pallen CJ
    Cells Tissues Organs; 2007; 185(1-3):232-6. PubMed ID: 17587829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells.
    Piltti J; Häyrinen J; Karjalainen HM; Lammi MJ
    Biorheology; 2008; 45(3-4):323-35. PubMed ID: 18836233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis.
    Eymann C; Becher D; Bernhardt J; Gronau K; Klutzny A; Hecker M
    Proteomics; 2007 Oct; 7(19):3509-26. PubMed ID: 17726680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase.
    Yamagata A; Kristensen DB; Takeda Y; Miyamoto Y; Okada K; Inamatsu M; Yoshizato K
    Proteomics; 2002 Sep; 2(9):1267-76. PubMed ID: 12362345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the small tyrosine phosphatase (Stp1) in Saccharomyces cerevisiae: a study on protein tyrosine phosphorylation.
    Modesti A; Bini L; Carraresi L; Magherini F; Liberatori S; Pallini V; Manao G; Pinna LA; Raugei G; Ramponi G
    Electrophoresis; 2001 Feb; 22(3):576-85. PubMed ID: 11258771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FPRL-1 induces modifications of migration-associated proteins in human neutrophils.
    Boldt K; Rist W; Weiss SM; Weith A; Lenter MC
    Proteomics; 2006 Sep; 6(17):4790-9. PubMed ID: 16892486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping phosphoproteins in Neisseria meningitidis serogroup A.
    Bernardini G; Laschi M; Serchi T; Arena S; D'Ambrosio C; Braconi D; Scaloni A; Santucci A
    Proteomics; 2011 Apr; 11(7):1351-8. PubMed ID: 21365747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic identification of p53-dependent protein phosphorylation.
    Rahman-Roblick R; Hellman U; Becker S; Bader FG; Auer G; Wiman KG; Roblick UJ
    Oncogene; 2008 Aug; 27(35):4854-9. PubMed ID: 18438429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome analysis.
    Raggiaschi R; Gotta S; Terstappen GC
    Biosci Rep; 2005; 25(1-2):33-44. PubMed ID: 16222418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomic analysis of aged skeletal muscle.
    Gannon J; Staunton L; O'Connell K; Doran P; Ohlendieck K
    Int J Mol Med; 2008 Jul; 22(1):33-42. PubMed ID: 18575773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.