BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19639567)

  • 41. Using multiplex-staining to study changes in the maize leaf phosphoproteome in response to mechanical wounding.
    Lewandowska-Gnatowska E; Johnston ML; Antoine W; Szczegielniak J; Muszyńska G; Miernyk JA
    Phytochemistry; 2011 Jul; 72(10):1285-92. PubMed ID: 21334701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparative proteome and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible species Solanum chacoense Bitt.
    Vyetrogon K; Tebbji F; Olson DJ; Ross AR; Matton DP
    Proteomics; 2007 Jan; 7(2):232-47. PubMed ID: 17205606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PRL PTPs: mediators and markers of cancer progression.
    Bessette DC; Qiu D; Pallen CJ
    Cancer Metastasis Rev; 2008 Jun; 27(2):231-52. PubMed ID: 18224294
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells.
    Wang L; Shen Y; Song R; Sun Y; Xu J; Xu Q
    Mol Pharmacol; 2009 Dec; 76(6):1238-45. PubMed ID: 19779032
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome.
    Ito J; Taylor NL; Castleden I; Weckwerth W; Millar AH; Heazlewood JL
    Proteomics; 2009 Sep; 9(17):4229-40. PubMed ID: 19688752
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of protein kinase substrates by proteomic approaches.
    Hattori S; Iida N; Kosako H
    Expert Rev Proteomics; 2008 Jun; 5(3):497-505. PubMed ID: 18532915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomic analysis of chemonaive pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets.
    Folio C; Mora MI; Zalacain M; Corrales FJ; Segura V; Sierrasesúmaga L; Toledo G; San-Julián M; Patiño-García A
    J Proteome Res; 2009 Aug; 8(8):3882-8. PubMed ID: 19492781
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation of two Locust protein targets of a protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102.
    Li Z; Wang C; Xia Y
    J Invertebr Pathol; 2008 Oct; 99(2):151-5. PubMed ID: 18692505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Several enzymes of the central metabolism are phosphorylated in Staphylococcus aureus.
    Lomas-Lopez R; Paracuellos P; Riberty M; Cozzone AJ; Duclos B
    FEMS Microbiol Lett; 2007 Jul; 272(1):35-42. PubMed ID: 17498211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, preparation and use of ligated phosphoproteins: a novel approach to study protein phosphatases by dot blot array, ELISA and Western blot assays.
    Sun L; Ghosh I; Barshevsky T; Kochinyan S; Xu MQ
    Methods; 2007 Jul; 42(3):220-6. PubMed ID: 17532508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like.
    Peterburs P; Heering J; Link G; Pfizenmaier K; Olayioye MA; Hausser A
    Cancer Res; 2009 Jul; 69(14):5634-8. PubMed ID: 19567672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic analysis of protein phosphatase Z1 from Candida albicans.
    Márkus B; Szabó K; Pfliegler WP; Petrényi K; Boros E; Pócsi I; Tőzsér J; Csősz É; Dombrádi V
    PLoS One; 2017; 12(8):e0183176. PubMed ID: 28837603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle.
    Jacques AM; Copeland O; Messer AE; Gallon CE; King K; McKenna WJ; Tsang VT; Marston SB
    J Mol Cell Cardiol; 2008 Aug; 45(2):209-16. PubMed ID: 18573260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The phosphoproteome and its physiological dynamics in Staphylococcus aureus.
    Bäsell K; Otto A; Junker S; Zühlke D; Rappen GM; Schmidt S; Hentschker C; Macek B; Ohlsen K; Hecker M; Becher D
    Int J Med Microbiol; 2014 Mar; 304(2):121-32. PubMed ID: 24457182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Principles and examples of gel-based approaches for phosphoprotein analysis.
    Steinberger B; Mayrhofer C
    Methods Mol Biol; 2015; 1295():305-21. PubMed ID: 25820731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783.
    Tian W; Qu L; Meng L; Liu C; Wu J; Shou C
    BMC Biochem; 2012 Oct; 13():22. PubMed ID: 23092334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins.
    Agrawal GK; Thelen JJ
    Proteomics; 2005 Dec; 5(18):4684-8. PubMed ID: 16267815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation.
    Mehlitz A; Banhart S; Hess S; Selbach M; Meyer TF
    FEMS Microbiol Lett; 2008 Dec; 289(2):233-40. PubMed ID: 19016873
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: possible associations with cell signalling networks.
    Fania C; Anastasia L; Vasso M; Papini N; Capitanio D; Venerando B; Gelfi C
    Electrophoresis; 2009 Jun; 30(12):2193-206. PubMed ID: 19582720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diffusion control of protein phosphorylation in signal transduction pathways.
    Kholodenko BN; Brown GC; Hoek JB
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):901-7. PubMed ID: 10970807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.