These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19639636)

  • 21. Energetics of peptide recognition by the second PDZ domain of human protein tyrosine phosphatase 1E.
    Milev S; Bjelić S; Georgiev O; Jelesarov I
    Biochemistry; 2007 Jan; 46(4):1064-78. PubMed ID: 17240990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional characterization of binding sites in metallocarboxypeptidases based on Optimal Docking Area analysis.
    Fernández D; Vendrell J; Avilés FX; Fernández-Recio J
    Proteins; 2007 Jul; 68(1):131-44. PubMed ID: 17407161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational investigation of the specificity determining region of the Src SH2 domain.
    Bradshaw JM; Mitaxov V; Waksman G
    J Mol Biol; 2000 Jun; 299(2):521-35. PubMed ID: 10860756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW; Golding GB; Crerar MM
    J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein flexibility and rigidity predicted from sequence.
    Schlessinger A; Rost B
    Proteins; 2005 Oct; 61(1):115-26. PubMed ID: 16080156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionarily conserved pathways of energetic connectivity in protein families.
    Lockless SW; Ranganathan R
    Science; 1999 Oct; 286(5438):295-9. PubMed ID: 10514373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphical models of protein-protein interaction specificity from correlated mutations and interaction data.
    Thomas J; Ramakrishnan N; Bailey-Kellogg C
    Proteins; 2009 Sep; 76(4):911-29. PubMed ID: 19306342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling.
    Petrey D; Xiang Z; Tang CL; Xie L; Gimpelev M; Mitros T; Soto CS; Goldsmith-Fischman S; Kernytsky A; Schlessinger A; Koh IY; Alexov E; Honig B
    Proteins; 2003; 53 Suppl 6():430-5. PubMed ID: 14579332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinguishing structural and functional restraints in evolution in order to identify interaction sites.
    Chelliah V; Chen L; Blundell TL; Lovell SC
    J Mol Biol; 2004 Oct; 342(5):1487-504. PubMed ID: 15364576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions.
    Zhou GP; Troy FA
    Glycobiology; 2003 Feb; 13(2):51-71. PubMed ID: 12626407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization centers in proteins: identification, characterization and predictions.
    Dosztányi Z; Fiser A; Simon I
    J Mol Biol; 1997 Oct; 272(4):597-612. PubMed ID: 9325115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains.
    Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R
    J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-consistent structural perturbation approach for determining the magnitude and extent of allosteric coupling in proteins.
    Rajasekaran N; Naganathan AN
    Biochem J; 2017 Jul; 474(14):2379-2388. PubMed ID: 28522638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms.
    Livesay DR; Kreth KE; Fodor AA
    Methods Mol Biol; 2012; 796():385-98. PubMed ID: 22052502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation analysis for protein evolutionary family based on amino acid position mutations and application in PDZ domain.
    Du QS; Wang CH; Liao SM; Huang RB
    PLoS One; 2010 Oct; 5(10):e13207. PubMed ID: 20949088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allostery in pharmacology: thermodynamics, evolution and design.
    Maksay G
    Prog Biophys Mol Biol; 2011 Sep; 106(3):463-73. PubMed ID: 21223978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of network of residues that regulate allostery in protein families using sequence analysis.
    Dima RI; Thirumalai D
    Protein Sci; 2006 Feb; 15(2):258-68. PubMed ID: 16434743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reassessing a sparse energetic network within a single protein domain.
    Chi CN; Elfström L; Shi Y; Snäll T; Engström A; Jemth P
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4679-84. PubMed ID: 18339805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.