These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research. Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420 [TBL] [Abstract][Full Text] [Related]
3. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres. Lin S; Yao G; Qi D; Li Y; Deng C; Yang P; Zhang X Anal Chem; 2008 May; 80(10):3655-65. PubMed ID: 18407620 [TBL] [Abstract][Full Text] [Related]
4. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Lin S; Lin Z; Yao G; Deng C; Yang P; Zhang X Rapid Commun Mass Spectrom; 2007; 21(23):3910-8. PubMed ID: 17990248 [TBL] [Abstract][Full Text] [Related]
5. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS. Wu HF; Agrawal K; Shrivas K; Lee YH J Mass Spectrom; 2010 Dec; 45(12):1402-8. PubMed ID: 20967754 [TBL] [Abstract][Full Text] [Related]
6. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry. Spross J; Sinz A Anal Chem; 2010 Feb; 82(4):1434-43. PubMed ID: 20099804 [TBL] [Abstract][Full Text] [Related]
7. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis. Wang S; Chen Z; Yang P; Chen G Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168 [TBL] [Abstract][Full Text] [Related]
8. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077 [TBL] [Abstract][Full Text] [Related]
9. High throughput tryptic digestion via poly (acrylamide-co-methylenebisacrylamide) monolith based immobilized enzyme reactor. Wu S; Sun L; Ma J; Yang K; Liang Z; Zhang L; Zhang Y Talanta; 2011 Feb; 83(5):1748-53. PubMed ID: 21238779 [TBL] [Abstract][Full Text] [Related]
10. Integrated platform for proteome analysis with combination of protein and peptide separation via online digestion. Yuan H; Zhang L; Hou C; Zhu G; Tao D; Liang Z; Zhang Y Anal Chem; 2009 Nov; 81(21):8708-14. PubMed ID: 19788244 [TBL] [Abstract][Full Text] [Related]
11. Pressure-assisted tryptic digestion using a syringe. Yang HJ; Hong J; Lee S; Shin S; Kim J; Kim J Rapid Commun Mass Spectrom; 2010 Apr; 24(7):901-8. PubMed ID: 20196188 [TBL] [Abstract][Full Text] [Related]
12. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H; Lui T; Zhang L; Chen G Proteomics; 2009 Feb; 9(4):1114-7. PubMed ID: 19180540 [TBL] [Abstract][Full Text] [Related]
13. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. Liu J; Lin S; Qi D; Deng C; Yang P; Zhang X J Chromatogr A; 2007 Dec; 1176(1-2):169-77. PubMed ID: 18021785 [TBL] [Abstract][Full Text] [Related]
14. Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis. Lin S; Yun D; Qi D; Deng C; Li Y; Zhang X J Proteome Res; 2008 Mar; 7(3):1297-307. PubMed ID: 18257514 [TBL] [Abstract][Full Text] [Related]
15. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography. Gao M; Zhang P; Hong G; Guan X; Yan G; Deng C; Zhang X J Chromatogr A; 2009 Oct; 1216(44):7472-7. PubMed ID: 19481218 [TBL] [Abstract][Full Text] [Related]
16. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors. Zhang P; Gao M; Zhu S; Lei J; Zhang X J Chromatogr A; 2011 Nov; 1218(47):8567-71. PubMed ID: 22024345 [TBL] [Abstract][Full Text] [Related]
17. Online microwave D-cleavage LC-ESI-MS/MS of intact proteins: site-specific cleavages at aspartic acid residues and disulfide bonds. Hauser NJ; Basile F J Proteome Res; 2008 Mar; 7(3):1012-26. PubMed ID: 18198820 [TBL] [Abstract][Full Text] [Related]
18. Infrared-assisted tryptic proteolysis for peptide mapping. Wang S; Zhang L; Yang P; Chen G Proteomics; 2008 Jul; 8(13):2579-82. PubMed ID: 18546161 [TBL] [Abstract][Full Text] [Related]
19. Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis. Yao G; Qi D; Deng C; Zhang X J Chromatogr A; 2008 Dec; 1215(1-2):82-91. PubMed ID: 19026420 [TBL] [Abstract][Full Text] [Related]
20. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. Krenkova J; Lacher NA; Svec F Anal Chem; 2009 Mar; 81(5):2004-12. PubMed ID: 19186936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]