BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19639956)

  • 21. Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer.
    Hoffmann P; Häusig U; Schulze P; Belder D
    Angew Chem Int Ed Engl; 2007; 46(26):4913-6. PubMed ID: 17516595
    [No Abstract]   [Full Text] [Related]  

  • 22. Atmospheric molded poly(methylmethacrylate) microchip emitters for sheathless electrospray.
    Muck A; Svatos A
    Rapid Commun Mass Spectrom; 2004; 18(13):1459-64. PubMed ID: 15216506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of fully microfabricated, three-dimensionally sharp electrospray ionization tips with microfluidic glass chips.
    Sainiemi L; Sikanen T; Kostiainen R
    Anal Chem; 2012 Nov; 84(21):8973-9. PubMed ID: 23045954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated Electrodes and Electrospray Emitter for Polymer Microfluidic Nanospray-MS Interface.
    Forzano AV; Becirovic V; Martin RS; Edwards JL
    Anal Methods; 2016 Jul; 8(25):5152-5157. PubMed ID: 27818712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.
    Yuill EM; Sa N; Ray SJ; Hieftje GM; Baker LA
    Anal Chem; 2013 Sep; 85(18):8498-502. PubMed ID: 23968307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface roughening of a non-tapered open tubular emitter for improved electrospray ionization mass spectrometry performance at low flow rates.
    Su S; Marecak D; Oleschuk RD
    Rapid Commun Mass Spectrom; 2008 Jul; 22(13):2053-62. PubMed ID: 18512851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micro-electrospray with stainless steel emitters.
    Shui W; Yu Y; Xu X; Huang Z; Xu G; Yang P
    Rapid Commun Mass Spectrom; 2003; 17(14):1541-7. PubMed ID: 12845578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recirculation of nanoliter volumes within microfluidic channels.
    Lammertink RG; Schlautmann S; Besselink GA; Schasfoort RB
    Anal Chem; 2004 Jun; 76(11):3018-22. PubMed ID: 15167777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chip electrophoresis with mass spectrometric detection in record speed.
    Fritzsche S; Hoffmann P; Belder D
    Lab Chip; 2010 May; 10(10):1227-30. PubMed ID: 20445873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capillary electrophoresis coupled to negative mode electrospray ionization-mass spectrometry using an electrokinetically-pumped nanospray interface with primary amines grafted to the interior of a glass emitter.
    Sarver SA; Schiavone NM; Arceo J; Peuchen EH; Zhang Z; Sun L; Dovichi NJ
    Talanta; 2017 Apr; 165():522-525. PubMed ID: 28153293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips.
    Fu LM; Lee CY; Liao MH; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous separation and detection of cations and anions on a microfluidic device with suppressed electroosmotic flow and a single injection point.
    Reschke BR; Schiffbauer J; Edwards BF; Timperman AT
    Analyst; 2010 Jun; 135(6):1351-9. PubMed ID: 20498885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection.
    Vrouwe EX; Luttge R; van den Berg A
    Electrophoresis; 2004 Jun; 25(10-11):1660-7. PubMed ID: 15188255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass.
    Pu QS; Luttge R; Gardeniers HJ; van den Berg A
    Electrophoresis; 2003 Jan; 24(1-2):162-71. PubMed ID: 12652587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.
    Batz NG; Mellors JS; Alarie JP; Ramsey JM
    Anal Chem; 2014 Apr; 86(7):3493-500. PubMed ID: 24655020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated micropump and electrospray emitter system based on porous silica monoliths.
    Wang P; Chen Z; Chang HC
    Electrophoresis; 2006 Oct; 27(20):3964-70. PubMed ID: 16983638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.