These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19639957)

  • 1. QSAR models for predicting the similarity in binding profiles for pairs of protein kinases and the variation of models between experimental data sets.
    Sheridan RP; Nam K; Maiorov VN; McMasters DR; Cornell WD
    J Chem Inf Model; 2009 Aug; 49(8):1974-85. PubMed ID: 19639957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome.
    Martin E; Mukherjee P
    J Chem Inf Model; 2012 Jan; 52(1):156-70. PubMed ID: 22133092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fingerprint-based clustering applied to define a QSAR model use radius.
    Sprous DG
    J Mol Graph Model; 2008 Sep; 27(2):225-32. PubMed ID: 18556228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-based 3D-QSAR studies of checkpoint Wee1 kinase inhibitors.
    Wichapong K; Lindner M; Pianwanit S; Kokpol S; Sippl W
    Eur J Med Chem; 2009 Apr; 44(4):1383-95. PubMed ID: 18976834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model.
    Kolb P; Huang D; Dey F; Caflisch A
    J Med Chem; 2008 Mar; 51(5):1179-88. PubMed ID: 18271520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting polypharmacology by binding site similarity: from kinases to the protein universe.
    Milletti F; Vulpetti A
    J Chem Inf Model; 2010 Aug; 50(8):1418-31. PubMed ID: 20666497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction profiles of protein kinase-inhibitor complexes and their application to virtual screening.
    Chuaqui C; Deng Z; Singh J
    J Med Chem; 2005 Jan; 48(1):121-33. PubMed ID: 15634006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the PharmPrint methodology to two protein kinases.
    Deanda F; Stewart EL
    J Chem Inf Comput Sci; 2004; 44(5):1803-9. PubMed ID: 15446839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding.
    Sheinerman FB; Giraud E; Laoui A
    J Mol Biol; 2005 Oct; 352(5):1134-56. PubMed ID: 16139843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General model for estimation of the inhibition of protein kinases using Monte Carlo simulations.
    Tominaga Y; Jorgensen WL
    J Med Chem; 2004 May; 47(10):2534-49. PubMed ID: 15115396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docking, 3D-QSAR studies and in silico ADME prediction on c-Src tyrosine kinase inhibitors.
    Tintori C; Magnani M; Schenone S; Botta M
    Eur J Med Chem; 2009 Mar; 44(3):990-1000. PubMed ID: 18722033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pharmacophore map of small molecule protein kinase inhibitors.
    McGregor MJ
    J Chem Inf Model; 2007; 47(6):2374-82. PubMed ID: 17941626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors.
    Laufer SA; Domeyer DM; Scior TR; Albrecht W; Hauser DR
    J Med Chem; 2005 Feb; 48(3):710-22. PubMed ID: 15689155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinase inhibitor recognition by use of a multivariable QSAR model.
    Sprous DG; Zhang J; Zhang L; Wang Z; Tepper MA
    J Mol Graph Model; 2006 Jan; 24(4):278-95. PubMed ID: 16253531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treating chemical diversity in QSAR analysis: modeling diverse HIV-1 integrase inhibitors using 4D fingerprints.
    Iyer M; Hopfinger AJ
    J Chem Inf Model; 2007; 47(5):1945-60. PubMed ID: 17661457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis.
    Huang D; Zhou T; Lafleur K; Nevado C; Caflisch A
    Bioinformatics; 2010 Jan; 26(2):198-204. PubMed ID: 19942586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks.
    Prado-Prado FJ; Martinez de la Vega O; Uriarte E; Ubeira FM; Chou KC; González-Díaz H
    Bioorg Med Chem; 2009 Jan; 17(2):569-75. PubMed ID: 19112024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing potency of c-Jun N-terminal kinase 3 (JNK3) inhibitors using 2D molecular descriptors and binary QSAR methodology.
    Ijjaali I; Petitet F; Dubus E; Barberan O; Michel A
    Bioorg Med Chem; 2007 Jun; 15(12):4256-64. PubMed ID: 17451961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.