These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19639988)

  • 1. One-dimensional ROESY experiments with full sensitivity and reliable cross-peak integration when applied to natural products.
    Furrer J
    J Nat Prod; 2009 Aug; 72(8):1437-41. PubMed ID: 19639988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations in the deduction of carbon NMR spectra from the f1 dimension of standard 2D heteronuclear experiments when applied to natural products.
    Sandusky P
    J Nat Prod; 2007 Dec; 70(12):1895-900. PubMed ID: 17994704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR of natural products at the 'nanomole-scale'.
    Molinski TF
    Nat Prod Rep; 2010 Mar; 27(3):321-9. PubMed ID: 20179874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution four-dimensional carbon-correlated 1H-1H ROESY experiments employing isotags and the filter diagonalization method for effective assignment of glycosidic linkages in oligosaccharides.
    Armstrong GS; Bendiak B
    J Magn Reson; 2006 Jul; 181(1):79-88. PubMed ID: 16621633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of including local correlation times in the calculation of inter-proton distances from NMR measurements: ignoring local correlation times leads to significant errors in the conformational analysis of the Glc alpha1-2Glc alpha linkage by NMR spectroscopy.
    Mackeen M; Almond A; Cumpstey I; Enis SC; Kupce E; Butters TD; Fairbanks AJ; Dwek RA; Wormald MR
    Org Biomol Chem; 2006 Jun; 4(11):2241-6. PubMed ID: 16729133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-precision heteronuclear 2D NMR experiments using 10-ppm spectral window to resolve carbon overlap.
    Vitorge B; Bieri S; Humam M; Christen P; Hostettmann K; Muñoz O; Loss S; Jeannerat D
    Chem Commun (Camb); 2009 Feb; (8):950-2. PubMed ID: 19214326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the limits of the selective 1D NOESY experiment with an improved selective TOCSY edited preparation function.
    Hu H; Bradley SA; Krishnamurthy K
    J Magn Reson; 2004 Dec; 171(2):201-6. PubMed ID: 15546745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of new natural products by application of X-hitting, a novel algorithm for automated comparison of full UV spectra, combined with structural determination by NMR spectroscopy.
    Larsen TO; Petersen BO; Duus JØ; Sørensen D; Frisvad JC; Hansen ME
    J Nat Prod; 2005 Jun; 68(6):871-4. PubMed ID: 15974610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional relayed-rotating-frame overhauser spectroscopy (1)H NMR experiments for the selective identification of 1,2-glycosidic linkages in polysaccharides.
    Cipollo JF; Trimble RB; Rance M; Cavanagh J
    Anal Biochem; 2000 Feb; 278(1):52-8. PubMed ID: 10640353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective HOESY experiments for stereochemical determinations.
    Yemloul M; Bouguet-Bonnet S; Ba LA; Kirsch G; Canet D
    Magn Reson Chem; 2008 Oct; 46(10):939-42. PubMed ID: 18683157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for simulation of NOESY, ROESY, and off-resonance ROESY spectra.
    Allard P; Helgstrand M; Hard T
    J Magn Reson; 1997 Nov; 129(1):19-29. PubMed ID: 9405212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative 1H NMR: development and potential of a method for natural products analysis.
    Pauli GF; Jaki BU; Lankin DC
    J Nat Prod; 2005 Jan; 68(1):133-49. PubMed ID: 15679337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting NMR spectra by computational methods: structure revision of hexacyclinol.
    Rychnovsky SD
    Org Lett; 2006 Jun; 8(13):2895-8. PubMed ID: 16774284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ROESY with water flip back for high-field NMR of biomolecules.
    Fulton DB; Ni F
    J Magn Reson; 1997 Nov; 129(1):93-7. PubMed ID: 9405220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in automated structure elucidation of natural products.
    Steinbeck C
    Nat Prod Rep; 2004 Aug; 21(4):512-8. PubMed ID: 15282633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural revisions of natural products by Computer-Assisted Structure Elucidation (CASE) systems.
    Elyashberg M; Williams AJ; Blinov K
    Nat Prod Rep; 2010 Sep; 27(9):1296-328. PubMed ID: 20480119
    [No Abstract]   [Full Text] [Related]  

  • 17. An NMR approach applicable to biomolecular structure characterization.
    Hu BW; Zhou P; Noda I; Zhao GZ
    Anal Chem; 2005 Dec; 77(23):7534-8. PubMed ID: 16316159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Multiplicity Editing in Long-Range Heteronuclear Correlation NMR Experiments: A Valuable Tool for the Structure Elucidation of Natural Products.
    Saurí J; Frédérich M; Tchinda AT; Parella T; Williamson RT; Martin GE
    J Nat Prod; 2015 Sep; 78(9):2236-41. PubMed ID: 26305494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted natural product isolation guided by HPLC-SPE-NMR: constituents of Hubertia species.
    Sprogøe K; Staerk D; Jäger AK; Adsersen A; Hansen SH; Witt M; Landbo AK; Meyer AS; Jaroszewski JW
    J Nat Prod; 2007 Sep; 70(9):1472-7. PubMed ID: 17822297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol.
    Wipf P; Kerekes AD
    J Nat Prod; 2003 May; 66(5):716-8. PubMed ID: 12762817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.