These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19640035)

  • 1. The forced radiation efficiency of finite size flat panels that are excited by incident sound.
    Davy JL
    J Acoust Soc Am; 2009 Aug; 126(2):694-702. PubMed ID: 19640035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The directivity of the sound radiation from panels and openings.
    Davy JL
    J Acoust Soc Am; 2009 Jun; 125(6):3795-805. PubMed ID: 19507962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.
    Sum KS; Pan J
    J Acoust Soc Am; 2007 Jul; 122(1):333-44. PubMed ID: 17614493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the sound fields of infinitely long strips.
    Mellow T; Kärkkäinen L
    J Acoust Soc Am; 2011 Jul; 130(1):153-67. PubMed ID: 21786886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating sound power radiated from rectangular baffled panels using a radiation factor.
    Palumbo D
    J Acoust Soc Am; 2009 Oct; 126(4):1827-37. PubMed ID: 19813797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the sound insulation of single leaf walls: extension of Cremer's model.
    Davy JL
    J Acoust Soc Am; 2009 Oct; 126(4):1871-7. PubMed ID: 19813801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The average specific forced radiation wave impedance of a finite rectangular panel.
    Davy JL; Larner DJ; Wareing RR; Pearse JR
    J Acoust Soc Am; 2014 Aug; 136(2):525-36. PubMed ID: 25096087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical modeling of sound transmission across finite aeroelastic panels in convicted fluids.
    Xin FX; Lu TJ
    J Acoust Soc Am; 2010 Sep; 128(3):1097-107. PubMed ID: 20815446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sound insulation of single leaf finite size rectangular plywood panels with orthotropic frequency dependent bending stiffness.
    Wareing RR; Davy JL; Pearse JR
    J Acoust Soc Am; 2016 Jan; 139(1):520-8. PubMed ID: 26827045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous and sandwich active panels under deterministic and stochastic excitation.
    Rohlfing J; Gardonio P
    J Acoust Soc Am; 2009 Jun; 125(6):3696-706. PubMed ID: 19507952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of finite and infinite wall cavities on the sound insulation of double-leaf walls.
    Cambridge JE; Davy JL; Pearse J
    J Acoust Soc Am; 2017 Jan; 141(1):207. PubMed ID: 28147555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On sound propagation from a slanted side branch into an infinitely long rectangular duct.
    Tang SK; Lam GC
    J Acoust Soc Am; 2008 Oct; 124(4):1921-9. PubMed ID: 19062831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.
    Wang C
    J Acoust Soc Am; 2018 Mar; 143(3):1567. PubMed ID: 29604672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of sound transmission through, and radiation from, panels using a wave and finite element method.
    Yang Y; Mace BR; Kingan MJ
    J Acoust Soc Am; 2017 Apr; 141(4):2452. PubMed ID: 28464678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity.
    Xin FX; Lu TJ; Chen CQ
    J Acoust Soc Am; 2008 Dec; 124(6):3604-12. PubMed ID: 19206789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Strip Diffraction: Comparison Between Kirchhoff Theory and Keller's Geometrical Theory in the Limit of Small Glancing Angle and Width.
    Deacetis LA; Lazar I
    Appl Opt; 1970 Jul; 9(7):1691-4. PubMed ID: 20076443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects.
    Xin FX; Lu TJ
    J Acoust Soc Am; 2009 Mar; 125(3):1506-17. PubMed ID: 19275309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the sound field of a shallow spherical shell in an infinite baffle.
    Mellow T; Kärkkäinen L
    J Acoust Soc Am; 2007 Jun; 121(6):3527-41. PubMed ID: 17552705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the modeling of the diffuse field sound transmission loss of finite thickness apertures.
    Sgard F; Nelisse H; Atalla N
    J Acoust Soc Am; 2007 Jul; 122(1):302-13. PubMed ID: 17614490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.