These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 19640139)
21. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression. Cortes DH; Elliott DM Biomech Model Mechanobiol; 2012 Jul; 11(6):781-90. PubMed ID: 21964839 [TBL] [Abstract][Full Text] [Related]
22. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Perie DS; Maclean JJ; Owen JP; Iatridis JC Ann Biomed Eng; 2006 May; 34(5):769-77. PubMed ID: 16598654 [TBL] [Abstract][Full Text] [Related]
23. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Johannessen W; Vresilovic EJ; Wright AC; Elliott DM Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723 [TBL] [Abstract][Full Text] [Related]
24. Individual Collagen Fibril Thickening and Stiffening of Annulus Fibrosus in Degenerative Intervertebral Disc. Liang T; Zhang LL; Xia W; Yang HL; Luo ZP Spine (Phila Pa 1976); 2017 Oct; 42(19):E1104-E1111. PubMed ID: 28146016 [TBL] [Abstract][Full Text] [Related]
25. Synchrotron tomography of intervertebral disc deformation quantified by digital volume correlation reveals microstructural influence on strain patterns. Disney CM; Eckersley A; McConnell JC; Geng H; Bodey AJ; Hoyland JA; Lee PD; Sherratt MJ; Bay BK Acta Biomater; 2019 Jul; 92():290-304. PubMed ID: 31082569 [TBL] [Abstract][Full Text] [Related]
26. Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state. Michalek AJ; Gardner-Morse MG; Iatridis JC J Biomech; 2012 Apr; 45(7):1227-31. PubMed ID: 22342138 [TBL] [Abstract][Full Text] [Related]
27. The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs. Maria Luisa R; Luca C J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601688 [TBL] [Abstract][Full Text] [Related]
29. In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains. Bruehlmann SB; Hulme PA; Duncan NA J Biomech; 2004 Feb; 37(2):223-31. PubMed ID: 14706325 [TBL] [Abstract][Full Text] [Related]
30. Relationship between streaming potential and compressive stress in bovine intervertebral tissue. Fujisaki K; Tadano S; Asano N J Biomech; 2011 Sep; 44(13):2477-81. PubMed ID: 21763660 [TBL] [Abstract][Full Text] [Related]
31. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis. Yao H; Gu WY Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405 [TBL] [Abstract][Full Text] [Related]
32. Dose-dependent response of tissue-engineered intervertebral discs to dynamic unconfined compressive loading. Hudson KD; Mozia RI; Bonassar LJ Tissue Eng Part A; 2015 Feb; 21(3-4):564-72. PubMed ID: 25277703 [TBL] [Abstract][Full Text] [Related]
33. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. Michalek AJ; Buckley MR; Bonassar LJ; Cohen I; Iatridis JC J Biomech; 2009 Oct; 42(14):2279-85. PubMed ID: 19664773 [TBL] [Abstract][Full Text] [Related]
34. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Yao H; Justiz MA; Flagler D; Gu WY Ann Biomed Eng; 2002; 30(10):1234-41. PubMed ID: 12540199 [TBL] [Abstract][Full Text] [Related]
35. Linear and Nonlinear Biphasic Mechanical Properties of Goat IVDs Under Different Swelling Conditions in Confined Compression. Rasoulian A; Vakili-Tahami F; Smit TH Ann Biomed Eng; 2021 Dec; 49(12):3296-3309. PubMed ID: 34480262 [TBL] [Abstract][Full Text] [Related]
36. Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Tsai TL; Nelson BC; Anderson PA; Zdeblick TA; Li WJ Spine J; 2014 Sep; 14(9):2127-40. PubMed ID: 24882152 [TBL] [Abstract][Full Text] [Related]
37. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model. Xie F; Zhou H; Zhao W; Huang L Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905 [TBL] [Abstract][Full Text] [Related]
38. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues. Römgens AM; van Donkelaar CC; Ito K Biomech Model Mechanobiol; 2013 Nov; 12(6):1221-31. PubMed ID: 23443749 [TBL] [Abstract][Full Text] [Related]
39. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc. Riches PE; McNally DS Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149 [TBL] [Abstract][Full Text] [Related]
40. Expression of adiponectin receptors in human and rat intervertebral disc cells and changes in receptor expression during disc degeneration using a rat tail temporary static compression model. Terashima Y; Kakutani K; Yurube T; Takada T; Maeno K; Hirata H; Miyazaki S; Ito M; Kakiuchi Y; Takeoka Y; Kuroda R; Nishida K J Orthop Surg Res; 2016 Nov; 11(1):147. PubMed ID: 27876065 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]