BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1105 related articles for article (PubMed ID: 19640147)

  • 1. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.
    Rosa M; Tiago JM; Singh SK; Geraldes V; Rodrigues MA
    AAPS PharmSciTech; 2016 Oct; 17(5):1049-59. PubMed ID: 26502885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of freezing rates and excipients on the infectivity of a live viral vaccine during lyophilization.
    Zhai S; Hansen RK; Taylor R; Skepper JN; Sanches R; Slater NK
    Biotechnol Prog; 2004; 20(4):1113-20. PubMed ID: 15296437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA; Shah RB
    Int J Pharm; 2013 Jun; 450(1-2):70-8. PubMed ID: 23618961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-drying of proteins: some emerging concerns.
    Roy I; Gupta MN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):165-77. PubMed ID: 15032737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance.
    Esfandiary R; Gattu SK; Stewart JM; Patel SM
    J Pharm Sci; 2016 Apr; 105(4):1427-33. PubMed ID: 27019959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.
    Searles JA; Carpenter JF; Randolph TW
    J Pharm Sci; 2001 Jul; 90(7):860-71. PubMed ID: 11458335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials.
    Kiani H; Sun DW; Delgado A; Zhang Z
    Ultrason Sonochem; 2012 May; 19(3):576-81. PubMed ID: 22070859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization.
    Searles JA; Carpenter JF; Randolph TW
    J Pharm Sci; 2001 Jul; 90(7):872-87. PubMed ID: 11458336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.
    De Beer TR; Allesø M; Goethals F; Coppens A; Heyden YV; De Diego HL; Rantanen J; Verpoort F; Vervaet C; Remon JP; Baeyens WR
    Anal Chem; 2007 Nov; 79(21):7992-8003. PubMed ID: 17896825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap-freezing approach for shortening the lyophilization cycle time of pharmaceutical formulations-demonstration of the concept.
    Kuu WY; Doty MJ; Rebbeck CL; Hurst WS; Cho YK
    J Pharm Sci; 2013 Aug; 102(8):2572-88. PubMed ID: 23728733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved preservation of human red blood cells by lyophilization.
    Han Y; Quan GB; Liu XZ; Ma EP; Liu A; Jin P; Cao W
    Cryobiology; 2005 Oct; 51(2):152-64. PubMed ID: 16095589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-drying of histocompatibility typing sera.
    Perry VP; Kroener CA; Martin JL
    Dev Biol Stand; 1976 Oct; 36():349-53. PubMed ID: 1030433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of controlled ice nucleation and lyoprotectants on nanoparticle stability during Freeze-drying and upon storage.
    Luo WC; Zhang W; Kim R; Chong H; Patel SM; Bogner RH; Lu X
    Int J Pharm; 2023 Jun; 641():123084. PubMed ID: 37245738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 100% Control of Controlled Ice Nucleation Vials by Camera-Supported Optical Inspection in Freeze-Drying.
    Lenger JH; Geidobler R; Halbinger W; Presser I; Winter G
    PDA J Pharm Sci Technol; 2022; 76(2):120-135. PubMed ID: 34131013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.