These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19640158)

  • 1. Dynamics of capturing process of multiple magnetic nanoparticles in a flow through microfluidic bioseparation system.
    Munir A; Wang J; Zhou HS
    IET Nanobiotechnol; 2009 Sep; 3(3):55-64. PubMed ID: 19640158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for predicting magnetic particle capture in a microfluidic bioseparator.
    Furlani EP; Sahoo Y; Ng KC; Wortman JC; Monk TE
    Biomed Microdevices; 2007 Aug; 9(4):451-63. PubMed ID: 17516176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative characterization of magnetic separators: comparison of systems with and without integrated microfluidic mixers.
    Lund-Olesen T; Bruus H; Hansen MF
    Biomed Microdevices; 2007 Apr; 9(2):195-205. PubMed ID: 17165127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements.
    Khashan SA; Alazzam A; Furlani EP
    Sci Rep; 2014 Jun; 4():5299. PubMed ID: 24931437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
    Zhang K; Liang Q; Ma S; Mu X; Hu P; Wang Y; Luo G
    Lab Chip; 2009 Oct; 9(20):2992-9. PubMed ID: 19789755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles.
    Kim JA; Lee HJ; Kang HJ; Park TH
    Biomed Microdevices; 2009 Feb; 11(1):287-96. PubMed ID: 18836835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoanalysis of micro/nanoparticles: a review.
    Suwa M; Watarai H
    Anal Chim Acta; 2011 Apr; 690(2):137-47. PubMed ID: 21435469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical characterization of magnetophoretic separation for MEMS-based biosensor applications.
    Modak N; Kejriwal D; Nandy K; Datta A; Ganguly R
    Biomed Microdevices; 2010 Feb; 12(1):23-34. PubMed ID: 19787456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring reaction rates on single particles in a microfluidic device.
    Caulum MM; Henry CS
    Lab Chip; 2008 Jun; 8(6):865-7. PubMed ID: 18497903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated microfluidic platform for magnetic microbeads separation and confinement.
    Ramadan Q; Samper V; Poenar DP; Yu C
    Biosens Bioelectron; 2006 Mar; 21(9):1693-702. PubMed ID: 16203127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic immunomagnetic cell separation from whole blood.
    Bhuvanendran Nair Gourikutty S; Chang CP; Puiu PD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():77-88. PubMed ID: 26773879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays.
    Lai JJ; Hoffman JM; Ebara M; Hoffman AS; Estournès C; Wattiaux A; Stayton PS
    Langmuir; 2007 Jun; 23(13):7385-91. PubMed ID: 17503854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices.
    Lai JJ; Nelson KE; Nash MA; Hoffman AS; Yager P; Stayton PS
    Lab Chip; 2009 Jul; 9(14):1997-2002. PubMed ID: 19568666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms.
    Cao Q; Han X; Li L
    Lab Chip; 2014 Aug; 14(15):2762-77. PubMed ID: 24903572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-based purification system with simultaneous sample washing and concentration.
    Ramadan Q; Lau TT; Ho SB
    Anal Bioanal Chem; 2010 Jan; 396(2):707-14. PubMed ID: 19921509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferrofluid mediated nanocytometry.
    Kose AR; Koser H
    Lab Chip; 2012 Jan; 12(1):190-6. PubMed ID: 22076536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays.
    Wang W; Yang C; Li CM
    Lab Chip; 2009 Jun; 9(11):1504-6. PubMed ID: 19458854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.