These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19640296)

  • 1. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression.
    Mo WJ; Fu XP; Han XT; Yang GY; Zhang JG; Guo FH; Huang Y; Mao YM; Li Y; Xie Y
    BMC Genomics; 2009 Jul; 10():340. PubMed ID: 19640296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying differential correlation in gene/pathway combinations.
    Braun R; Cope L; Parmigiani G
    BMC Bioinformatics; 2008 Nov; 9():488. PubMed ID: 19017408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression.
    Zhao H; Logothetis CJ; Gorlov IP
    Prostate Cancer Prostatic Dis; 2010 Sep; 13(3):252-9. PubMed ID: 20386565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CODC: a Copula-based model to identify differential coexpression.
    Ray S; Lall S; Bandyopadhyay S
    NPJ Syst Biol Appl; 2020 Jun; 6(1):20. PubMed ID: 32561750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarrays--identifying molecular portraits for prostate tumors with different Gleason patterns.
    Mendes A; Scott RJ; Moscato P
    Methods Mol Med; 2008; 141():131-51. PubMed ID: 18453088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concordant integrative gene set enrichment analysis of multiple large-scale two-sample expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S6. PubMed ID: 24564564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A statistical method for identifying differential gene-gene co-expression patterns.
    Lai Y; Wu B; Chen L; Zhao H
    Bioinformatics; 2004 Nov; 20(17):3146-55. PubMed ID: 15231528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of gene set enrichment methods.
    Abatangelo L; Maglietta R; Distaso A; D'Addabbo A; Creanza TM; Mukherjee S; Ancona N
    BMC Bioinformatics; 2009 Sep; 10():275. PubMed ID: 19725948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of gene interactions associated with disease from gene expression data using synergy networks.
    Watkinson J; Wang X; Zheng T; Anastassiou D
    BMC Syst Biol; 2008 Jan; 2():10. PubMed ID: 18234101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes.
    Smid M; Dorssers LC; Jenster G
    Bioinformatics; 2003 Nov; 19(16):2065-71. PubMed ID: 14594711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic dynamic modeling of short gene expression time-series data.
    Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying set-wise differential co-expression in gene expression microarray data.
    Cho SB; Kim J; Kim JH
    BMC Bioinformatics; 2009 Apr; 10():109. PubMed ID: 19371436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.
    Yeh HY; Cheng SW; Lin YC; Yeh CY; Lin SF; Soo VW
    BMC Med Genomics; 2009 Dec; 2():70. PubMed ID: 20025723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification between normal and tumor tissues based on the pair-wise gene expression ratio.
    Yap Y; Zhang X; Ling MT; Wang X; Wong YC; Danchin A
    BMC Cancer; 2004 Oct; 4():72. PubMed ID: 15469618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of regulatory networks that are altered in disease via differential co-expression.
    Amar D; Safer H; Shamir R
    PLoS Comput Biol; 2013; 9(3):e1002955. PubMed ID: 23505361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.
    Zhang W; Edwards A; Fan W; Zhu D; Zhang K
    BMC Bioinformatics; 2010 Jun; 11():338. PubMed ID: 20565989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular signature of cancer at gene level or pathway level? Case studies of colorectal cancer and prostate cancer microarray data.
    Chen J; Wang Y; Shen B; Zhang D
    Comput Math Methods Med; 2013; 2013():909525. PubMed ID: 23401724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells.
    Singh AP; Bafna S; Chaudhary K; Venkatraman G; Smith L; Eudy JD; Johansson SL; Lin MF; Batra SK
    Cancer Lett; 2008 Jan; 259(1):28-38. PubMed ID: 17977648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2017 Jan; 18(Suppl 1):1050. PubMed ID: 28198679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.