These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19640296)
21. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data. Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192 [TBL] [Abstract][Full Text] [Related]
22. Ranking analysis for identifying differentially expressed genes. Qi Y; Sun H; Sun Q; Pan L Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142 [TBL] [Abstract][Full Text] [Related]
23. Identification of jointly correlated gene sets. Ren Y; Ay A; Gerke TA; Kahveci T J Bioinform Comput Biol; 2018 Oct; 16(5):1840019. PubMed ID: 30419787 [TBL] [Abstract][Full Text] [Related]
24. Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays. Seo J; Bakay M; Chen YW; Hilmer S; Shneiderman B; Hoffman EP Bioinformatics; 2004 Nov; 20(16):2534-44. PubMed ID: 15117752 [TBL] [Abstract][Full Text] [Related]
25. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis. Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947 [TBL] [Abstract][Full Text] [Related]
26. Identification of differentially expressed genes in multiple microarray experiments using discrete fourier transform. Choo KW; Kong W Front Biosci; 2007 Jan; 12():1845-51. PubMed ID: 17127425 [TBL] [Abstract][Full Text] [Related]
27. Analysis of cis-Regulatory Elements in Gene Co-expression Networks in Cancer. Triska M; Ivliev A; Nikolsky Y; Tatarinova TV Methods Mol Biol; 2017; 1613():291-310. PubMed ID: 28849565 [TBL] [Abstract][Full Text] [Related]
28. Convergence of Prognostic Gene Signatures Suggests Underlying Mechanisms of Human Prostate Cancer Progression. Luca BA; Moulton V; Ellis C; Connell SP; Brewer DS; Cooper CS Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32708551 [TBL] [Abstract][Full Text] [Related]
29. Identification of Potential Key Genes and Pathways in Enzalutamide-Resistant Prostate Cancer Cell Lines: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database. Zheng L; Dou X; Ma X; Qu W; Tang X Biomed Res Int; 2020; 2020():8341097. PubMed ID: 32724813 [TBL] [Abstract][Full Text] [Related]
30. A global meta-analysis of microarray expression data to predict unknown gene functions and estimate the literature-data divide. Wren JD Bioinformatics; 2009 Jul; 25(13):1694-701. PubMed ID: 19447786 [TBL] [Abstract][Full Text] [Related]
31. Modified logistic regression models using gene coexpression and clinical features to predict prostate cancer progression. Zhao H; Logothetis CJ; Gorlov IP; Zeng J; Dai J Comput Math Methods Med; 2013; 2013():917502. PubMed ID: 24367394 [TBL] [Abstract][Full Text] [Related]
32. Identification of DNA regulatory motifs using Bayesian variable selection. Tadesse MG; Vannucci M; LiĆ² P Bioinformatics; 2004 Nov; 20(16):2553-61. PubMed ID: 15117754 [TBL] [Abstract][Full Text] [Related]
33. Feature selection and nearest centroid classification for protein mass spectrometry. Levner I BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095 [TBL] [Abstract][Full Text] [Related]
34. Integrating biomedical knowledge to model pathways of prostate cancer progression. Morris DS; Tomlins SA; Rhodes DR; Mehra R; Shah RB; Chinnaiyan AM Cell Cycle; 2007 May; 6(10):1177-87. PubMed ID: 17495538 [TBL] [Abstract][Full Text] [Related]
36. Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium. Schlicht M; Matysiak B; Brodzeller T; Wen X; Liu H; Zhou G; Dhir R; Hessner MJ; Tonellato P; Suckow M; Pollard M; Datta MW BMC Genomics; 2004 Aug; 5(1):58. PubMed ID: 15318950 [TBL] [Abstract][Full Text] [Related]
37. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. Yu YP; Landsittel D; Jing L; Nelson J; Ren B; Liu L; McDonald C; Thomas R; Dhir R; Finkelstein S; Michalopoulos G; Becich M; Luo JH J Clin Oncol; 2004 Jul; 22(14):2790-9. PubMed ID: 15254046 [TBL] [Abstract][Full Text] [Related]
38. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer. Ye Y; Li SL; Wang SY PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363 [TBL] [Abstract][Full Text] [Related]
39. Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer. Evans JR; Zhao SG; Chang SL; Tomlins SA; Erho N; Sboner A; Schiewer MJ; Spratt DE; Kothari V; Klein EA; Den RB; Dicker AP; Karnes RJ; Yu X; Nguyen PL; Rubin MA; de Bono J; Knudsen KE; Davicioni E; Feng FY JAMA Oncol; 2016 Apr; 2(4):471-80. PubMed ID: 26746117 [TBL] [Abstract][Full Text] [Related]
40. Clustering and re-clustering for pattern discovery in gene expression data. Ma PC; Chan KC; Chiu DK J Bioinform Comput Biol; 2005 Apr; 3(2):281-301. PubMed ID: 15852506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]