These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19640324)

  • 41. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals.
    Gaffney DJ; Keightley PD
    BMC Evol Biol; 2008 Sep; 8():265. PubMed ID: 18826599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model.
    Sved J; Bird A
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4692-6. PubMed ID: 2352943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Why does the human factor IX gene have a G + C content of 40%?
    Bottema CD; Bottema MJ; Ketterling RP; Yoon HS; Janco RL; Phillips JA; Sommer SS
    Am J Hum Genet; 1991 Oct; 49(4):839-50. PubMed ID: 1897528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identity by descent genome segmentation based on single nucleotide polymorphism distributions.
    Blackwell TW; Rouchka E; States DJ
    Proc Int Conf Intell Syst Mol Biol; 1999; ():54-9. PubMed ID: 10786286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes.
    Krawczak M; Ball EV; Cooper DN
    Am J Hum Genet; 1998 Aug; 63(2):474-88. PubMed ID: 9683596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions.
    Cooper DN; Krawczak M
    Hum Genet; 1990 Jun; 85(1):55-74. PubMed ID: 2192981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A codon substitution model that incorporates the effect of the GC contents, the gene density and the density of CpG islands of human chromosomes.
    Misawa K
    BMC Genomics; 2011 Aug; 12():397. PubMed ID: 21819607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An expanded sequence context model broadly explains variability in polymorphism levels across the human genome.
    Aggarwala V; Voight BF
    Nat Genet; 2016 Apr; 48(4):349-55. PubMed ID: 26878723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcription-coupled TA and GC strand asymmetries in the human genome.
    Touchon M; Nicolay S; Arneodo A; d'Aubenton-Carafa Y; Thermes C
    FEBS Lett; 2003 Dec; 555(3):579-82. PubMed ID: 14675777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of mutation subtypes on the allele frequency spectrum and population genetics inference.
    Liao K; Carlson J; Zöllner S
    G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36759699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel method distinguishes between mutation rates and fixation biases in patterns of single-nucleotide substitution.
    Lipatov M; Arndt PF; Hwa T; Petrov DA
    J Mol Evol; 2006 Feb; 62(2):168-75. PubMed ID: 16362483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Can mutation or fixation biases explain the allele frequency distribution of human single nucleotide polymorphisms (SNPs)?
    Lercher MJ; Hurst LD
    Gene; 2002 Oct; 300(1-2):53-8. PubMed ID: 12468085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The complementary neighborhood patterns and methylation-to-mutation likelihood structures of 15,110 single-nucleotide polymorphisms in the bovine genome.
    Jiang Z; Wu XL; Zhang M; Michal JJ; Wright RW
    Genetics; 2008 Sep; 180(1):639-47. PubMed ID: 18716328
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mutational spectrum of non-CpG DNA varies with CpG content.
    Walser JC; Furano AV
    Genome Res; 2010 Jul; 20(7):875-82. PubMed ID: 20498119
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome.
    Morton BR; Oberholzer VM; Clegg MT
    J Mol Evol; 1997 Sep; 45(3):227-31. PubMed ID: 9302315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for higher rates of nucleotide substitution in rodents than in man.
    Wu CI; Li WH
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1741-5. PubMed ID: 3856856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryptic variation in the human mutation rate.
    Hodgkinson A; Ladoukakis E; Eyre-Walker A
    PLoS Biol; 2009 Feb; 7(2):e1000027. PubMed ID: 19192947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantification of GC-biased gene conversion in the human genome.
    Glémin S; Arndt PF; Messer PW; Petrov D; Galtier N; Duret L
    Genome Res; 2015 Aug; 25(8):1215-28. PubMed ID: 25995268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of Electron-Holes on DNA Sequence-Specific Mutation Rates.
    Suárez-Villagrán MY; Azevedo RBR; Miller JH
    Genome Biol Evol; 2018 Apr; 10(4):1039-1047. PubMed ID: 29617801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation-drift model.
    Vogl C; Mikula LC; Burden CJ
    Theor Popul Biol; 2020 Aug; 134():106-118. PubMed ID: 32562610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.