BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19640715)

  • 21. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation.
    Benseny-Cases N; Cócera M; Cladera J
    Biochem Biophys Res Commun; 2007 Oct; 361(4):916-21. PubMed ID: 17679138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ(1-40) and Aβ(1-42).
    Lindberg DJ; Wranne MS; Gilbert Gatty M; Westerlund F; Esbjörner EK
    Biochem Biophys Res Commun; 2015 Mar; 458(2):418-23. PubMed ID: 25660454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seeding specificity in amyloid growth induced by heterologous fibrils.
    O'Nuallain B; Williams AD; Westermark P; Wetzel R
    J Biol Chem; 2004 Apr; 279(17):17490-9. PubMed ID: 14752113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay.
    Klunk WE; Jacob RF; Mason RP
    Anal Biochem; 1999 Jan; 266(1):66-76. PubMed ID: 9887214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils.
    Ye L; Morgenstern JL; Gee AD; Hong G; Brown J; Lockhart A
    J Biol Chem; 2005 Jun; 280(25):23599-604. PubMed ID: 15855161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the Binding Profiles of AZD2184 and Thioflavin T with Amyloid-β(1-42) Fibril by Molecular Docking and Molecular Dynamics Methods.
    Kuang G; Murugan NA; Tu Y; Nordberg A; Ågren H
    J Phys Chem B; 2015 Sep; 119(35):11560-7. PubMed ID: 26266837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo.
    Yang F; Lim GP; Begum AN; Ubeda OJ; Simmons MR; Ambegaokar SS; Chen PP; Kayed R; Glabe CG; Frautschy SA; Cole GM
    J Biol Chem; 2005 Feb; 280(7):5892-901. PubMed ID: 15590663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interrogating Amyloid Aggregates using Fluorescent Probes.
    Aliyan A; Cook NP; Martí AA
    Chem Rev; 2019 Dec; 119(23):11819-11856. PubMed ID: 31675223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The polyphenol piceid destabilizes preformed amyloid fibrils and oligomers in vitro: hypothesis on possible molecular mechanisms.
    Rivière C; Delaunay JC; Immel F; Cullin C; Monti JP
    Neurochem Res; 2009 Jun; 34(6):1120-8. PubMed ID: 19030989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanine dye-protein interactions: looking for fluorescent probes for amyloid structures.
    Volkova KD; Kovalska VB; Balanda AO; Vermeij RJ; Subramaniam V; Slominskii YL; Yarmoluk SM
    J Biochem Biophys Methods; 2007 Aug; 70(5):727-33. PubMed ID: 17467807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Selectivity and Sensitivity of Oligomeric p-Phenylene Ethynylenes for Detecting Fibrillar and Prefibrillar Amyloid Protein Aggregates.
    Fanni AM; Monge FA; Lin CY; Thapa A; Bhaskar K; Whitten DG; Chi EY
    ACS Chem Neurosci; 2019 Mar; 10(3):1813-1825. PubMed ID: 30657326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Luminescent imaging of insulin amyloid aggregation using a sensitive ruthenium-based probe in the red region.
    Pereira LMB; Cali MP; Marchi RC; Pazin WM; Carlos RM
    J Inorg Biochem; 2021 Nov; 224():111585. PubMed ID: 34450412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hexafluoroisopropanol induces self-assembly of β-amyloid peptides into highly ordered nanostructures.
    Pachahara SK; Chaudhary N; Subbalakshmi C; Nagaraj R
    J Pept Sci; 2012 Apr; 18(4):233-41. PubMed ID: 22252985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers.
    Ladiwala AR; Lin JC; Bale SS; Marcelino-Cruz AM; Bhattacharya M; Dordick JS; Tessier PM
    J Biol Chem; 2010 Jul; 285(31):24228-37. PubMed ID: 20511235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent Imaging of Amyloid-β Deposits in Brain: An Overview of Probe Development and a Highlight of the Applications for In Vivo Imaging.
    Fu H; Cui M
    Curr Med Chem; 2018; 25(23):2736-2759. PubMed ID: 29446721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils.
    Vus K; Trusova V; Gorbenko G; Sood R; Kirilova E; Kirilov G; Kalnina I; Kinnunen P
    J Fluoresc; 2014 Mar; 24(2):493-504. PubMed ID: 24371000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases.
    Kreutzer AG; Nowick JS
    Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease.
    Zhang Y; Ding C; Li C; Wang X
    Adv Clin Chem; 2021; 103():135-190. PubMed ID: 34229849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain.
    Chiti F; Bucciantini M; Capanni C; Taddei N; Dobson CM; Stefani M
    Protein Sci; 2001 Dec; 10(12):2541-7. PubMed ID: 11714922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into amyloid structure using chemical probes.
    Reinke AA; Gestwicki JE
    Chem Biol Drug Des; 2011 Jun; 77(6):399-411. PubMed ID: 21457473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.