These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19640826)

  • 1. Recognition of DNase I hypersensitive sites in multiple cell lines.
    Chen W; Luo L; Zhang L; Lin H
    Int J Bioinform Res Appl; 2009; 5(4):378-84. PubMed ID: 19640826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors.
    Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B
    Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pDHS-DSET: Prediction of DNase I hypersensitive sites in plant genome using DS evidence theory.
    Zhang S; Lin J; Su L; Zhou Z
    Anal Biochem; 2019 Jan; 564-565():54-63. PubMed ID: 30339812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells.
    Wang YM; Zhou P; Wang LY; Li ZH; Zhang YN; Zhang YX
    PLoS One; 2012; 7(8):e42414. PubMed ID: 22900019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of DNase I hypersensitive sites in plant genome using multiple modes of pseudo components.
    Zhang S; Zhuang W; Xu Z
    Anal Biochem; 2018 May; 549():149-156. PubMed ID: 29604265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive characterization of erythroid-specific enhancers in the genomic regions of human Krüppel-like factors.
    Xiong Q; Zhang Z; Chang KH; Qu H; Wang H; Qi H; Li Y; Ruan X; Yang Y; Yang Y; Li Y; Sandstrom R; Sabo PJ; Li Q; Stamatoyannopoulos G; Stamatoyannopoulos JA; Fang X
    BMC Genomics; 2013 Aug; 14():587. PubMed ID: 23985037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).
    Crawford GE; Holt IE; Whittle J; Webb BD; Tai D; Davis S; Margulies EH; Chen Y; Bernat JA; Ginsburg D; Zhou D; Luo S; Vasicek TJ; Daly MJ; Wolfsberg TG; Collins FS
    Genome Res; 2006 Jan; 16(1):123-31. PubMed ID: 16344561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iDHS-DMCAC: identifying DNase I hypersensitive sites with balanced dinucleotide-based detrending moving-average cross-correlation coefficient.
    Liang Y; Zhang S
    SAR QSAR Environ Res; 2019 Jun; 30(6):429-445. PubMed ID: 31117818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.
    Crawford GE; Davis S; Scacheri PC; Renaud G; Halawi MJ; Erdos MR; Green R; Meltzer PS; Wolfsberg TG; Collins FS
    Nat Methods; 2006 Jul; 3(7):503-9. PubMed ID: 16791207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LangMoDHS: A deep learning language model for predicting DNase I hypersensitive sites in mouse genome.
    Tang X; Zheng P; Liu Y; Yao Y; Huang G
    Math Biosci Eng; 2023 Jan; 20(1):1037-1057. PubMed ID: 36650801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pDHS-ELM: computational predictor for plant DNase I hypersensitive sites based on extreme learning machines.
    Zhang S; Chang M; Zhou Z; Dai X; Xu Z
    Mol Genet Genomics; 2018 Aug; 293(4):1035-1049. PubMed ID: 29594496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iDHS-RGME: Identification of DNase I hypersensitive sites by integrating information on nucleotide composition and physicochemical properties.
    Jin J; Feng J
    Biochem Biophys Res Commun; 2024 Nov; 734():150618. PubMed ID: 39222575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.
    Dong X; Wang X; Zhang F; Tian W
    Mol Biol Evol; 2016 Oct; 33(10):2565-75. PubMed ID: 27401230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the gene regulatory landscape in diseases through the identification of DNase I-hypersensitive sites.
    Chen Y; Chen A
    Biomed Rep; 2019 Sep; 11(3):87-97. PubMed ID: 31423302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information.
    Zou H; Yang F; Yin Z
    Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for DNase I hypersensitive sites identification.
    Lyu C; Wang L; Zhang J
    BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule.
    Liang Y; Zhang S
    Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.