BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19640830)

  • 1. Application of the Burrows-Wheeler Transform for searching for tandem repeats in DNA sequences.
    Pokrzywa R
    Int J Bioinform Res Appl; 2009; 5(4):432-46. PubMed ID: 19640830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BWtrs: A tool for searching for tandem repeats in DNA sequences based on the Burrows-Wheeler transform.
    Pokrzywa R; Polanski A
    Genomics; 2010 Nov; 96(5):316-21. PubMed ID: 20709168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New method for yeast identification using Burrows-Wheeler transform.
    Pokrzywa R
    J Bioinform Comput Biol; 2008 Apr; 6(2):403-13. PubMed ID: 18464330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color-coding reveals tandem repeats in the Escherichia coli genome.
    Yoshida T; Obata N; Oosawa K
    J Mol Biol; 2000 May; 298(3):343-9. PubMed ID: 10772854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using GPUs for the exact alignment of short-read genetic sequences by means of the Burrows-Wheeler transform.
    Salavert Torres J; Blanquer Espert I; Domínguez AT; Hernández García V; Medina Castelló I; Tárraga Giménez J; Dopazo Blázquez J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1245-56. PubMed ID: 22450827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem.
    Brodzik AK
    Bioinformatics; 2007 Mar; 23(6):694-700. PubMed ID: 17237057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform.
    Cox AJ; Bauer MJ; Jakobi T; Rosone G
    Bioinformatics; 2012 Jun; 28(11):1415-9. PubMed ID: 22556365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding approximate tandem repeats in genomic sequences.
    Wexler Y; Yakhini Z; Kashi Y; Geiger D
    J Comput Biol; 2005 Sep; 12(7):928-42. PubMed ID: 16201913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem repeats over the edit distance.
    Sokol D; Benson G; Tojeira J
    Bioinformatics; 2007 Jan; 23(2):e30-5. PubMed ID: 17237101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences.
    Mrázek J; Xie S
    Bioinformatics; 2006 Dec; 22(24):3099-100. PubMed ID: 17095514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient maximal repeat finding using the burrows-wheeler transform and wavelet tree.
    Külekci MO; Vitter JS; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):421-9. PubMed ID: 21968959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Computation of the Burrows-Wheeler Transform of Short Reads Using Prefix Parallelism.
    Kimura K; Koike A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):3-13. PubMed ID: 29994538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of perfect tandem repeat with random pattern and empirical homogeneity testing poly-criteria for latent periodicity revelation in biological sequences.
    Chaley M; Kutyrkin V
    Math Biosci; 2008 Jan; 211(1):186-204. PubMed ID: 18062999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skittle: a 2-dimensional genome visualization tool.
    Seaman JD; Sanford JC
    BMC Bioinformatics; 2009 Dec; 10():452. PubMed ID: 20042093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem repeats finder: a program to analyze DNA sequences.
    Benson G
    Nucleic Acids Res; 1999 Jan; 27(2):573-80. PubMed ID: 9862982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of microsatellites in DNA using adaptive S-transform.
    Sharma SD; Saxena R; Sharma SN
    IEEE J Biomed Health Inform; 2015 May; 19(3):1097-105. PubMed ID: 24951712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compression of Multiple DNA Sequences Using Intra-Sequence and Inter-Sequence Similarities.
    Cheng KO; Wu P; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1322-32. PubMed ID: 26671804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond tandem repeats: complex pattern structures and distant regions of similarity.
    Hauth AM; Joseph DA
    Bioinformatics; 2002; 18 Suppl 1():S31-7. PubMed ID: 12169528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.