These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 19640848)
1. A polarity probe for monitoring light-induced structural changes at the entrance of the chromophore pocket in a bacterial phytochrome. Borucki B; Lamparter T J Biol Chem; 2009 Sep; 284(38):26005-16. PubMed ID: 19640848 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. Borucki B; Seibeck S; Heyn MP; Lamparter T Biochemistry; 2009 Jul; 48(27):6305-17. PubMed ID: 19496558 [TBL] [Abstract][Full Text] [Related]
3. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter T; Michael N Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635 [TBL] [Abstract][Full Text] [Related]
4. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Cph1 phytochrome assembly from stopped-flow kinetics and circular dichroism. Borucki B; Otto H; Rottwinkel G; Hughes J; Heyn MP; Lamparter T Biochemistry; 2003 Nov; 42(46):13684-97. PubMed ID: 14622015 [TBL] [Abstract][Full Text] [Related]
6. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981 [TBL] [Abstract][Full Text] [Related]
7. Biliverdin binds covalently to agrobacterium phytochrome Agp1 via its ring A vinyl side chain. Lamparter T; Michael N; Caspani O; Miyata T; Shirai K; Inomata K J Biol Chem; 2003 Sep; 278(36):33786-92. PubMed ID: 12824166 [TBL] [Abstract][Full Text] [Related]
8. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Lamparter T; Michael N; Mittmann F; Esteban B Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11628-33. PubMed ID: 12186972 [TBL] [Abstract][Full Text] [Related]
9. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation. von Stetten D; Seibeck S; Michael N; Scheerer P; Mroginski MA; Murgida DH; Krauss N; Heyn MP; Hildebrandt P; Borucki B; Lamparter T J Biol Chem; 2007 Jan; 282(3):2116-23. PubMed ID: 17121858 [TBL] [Abstract][Full Text] [Related]
11. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118 [TBL] [Abstract][Full Text] [Related]
12. Subpicosecond midinfrared spectroscopy of the Pfr reaction of phytochrome Agp1 from Agrobacterium tumefaciens. Schumann C; Gross R; Wolf MM; Diller R; Michael N; Lamparter T Biophys J; 2008 Apr; 94(8):3189-97. PubMed ID: 18192363 [TBL] [Abstract][Full Text] [Related]
13. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. Li L; Lagarias JC J Biol Chem; 1992 Sep; 267(27):19204-10. PubMed ID: 1527043 [TBL] [Abstract][Full Text] [Related]
14. Structural and Vibrational Characterization of the Chromophore Binding Site of Bacterial Phytochrome Agp1. Takiden A; Velazquez-Escobar F; Dragelj J; Woelke AL; Knapp EW; Piwowarski P; Bart F; Hildebrandt P; Mroginski MA Photochem Photobiol; 2017 May; 93(3):713-723. PubMed ID: 28500721 [TBL] [Abstract][Full Text] [Related]
15. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2. Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. Wagner JR; Zhang J; von Stetten D; Günther M; Murgida DH; Mroginski MA; Walker JM; Forest KT; Hildebrandt P; Vierstra RD J Biol Chem; 2008 May; 283(18):12212-26. PubMed ID: 18192276 [TBL] [Abstract][Full Text] [Related]
17. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1. van Thor JJ; Mackeen M; Kuprov I; Dwek RA; Wormald MR Biophys J; 2006 Sep; 91(5):1811-22. PubMed ID: 16751241 [TBL] [Abstract][Full Text] [Related]
18. Molecular modeling of phytochrome using constitutive C-phycocyanin from Fremyella diplosiphon as a putative structural template. Parker W; Goebel P; Ross CR; Song PS; Stezowski JJ Bioconjug Chem; 1994; 5(1):21-30. PubMed ID: 8199230 [TBL] [Abstract][Full Text] [Related]
19. Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization. Jorissen HJ; Quest B; Lindner I; Tandeau de Marsac N; Gärtner W Photochem Photobiol; 2002 May; 75(5):554-9. PubMed ID: 12017484 [TBL] [Abstract][Full Text] [Related]
20. Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. Borucki B; von Stetten D; Seibeck S; Lamparter T; Michael N; Mroginski MA; Otto H; Murgida DH; Heyn MP; Hildebrandt P J Biol Chem; 2005 Oct; 280(40):34358-64. PubMed ID: 16061486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]