These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Behavioral and electrophysiological studies of chronic oral administration of L-type calcium channel blocker verapamil on learning and memory in rats. Lashgari R; Motamedi F; Zahedi Asl S; Shahidi S; Komaki A Behav Brain Res; 2006 Aug; 171(2):324-8. PubMed ID: 16707172 [TBL] [Abstract][Full Text] [Related]
3. The different effects on recognition memory of perirhinal kainate and NMDA glutamate receptor antagonism: implications for underlying plasticity mechanisms. Barker GR; Warburton EC; Koder T; Dolman NP; More JC; Aggleton JP; Bashir ZI; Auberson YP; Jane DE; Brown MW J Neurosci; 2006 Mar; 26(13):3561-6. PubMed ID: 16571764 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory. Tamagnini F; Barker G; Warburton EC; Burattini C; Aicardi G; Bashir ZI J Physiol; 2013 Aug; 591(16):3963-79. PubMed ID: 23671159 [TBL] [Abstract][Full Text] [Related]
5. cAMP responsive element-binding protein phosphorylation is necessary for perirhinal long-term potentiation and recognition memory. Warburton EC; Glover CP; Massey PV; Wan H; Johnson B; Bienemann A; Deuschle U; Kew JN; Aggleton JP; Bashir ZI; Uney J; Brown MW J Neurosci; 2005 Jul; 25(27):6296-303. PubMed ID: 16000619 [TBL] [Abstract][Full Text] [Related]
6. L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. Wankerl K; Weise D; Gentner R; Rumpf JJ; Classen J J Neurosci; 2010 May; 30(18):6197-204. PubMed ID: 20445045 [TBL] [Abstract][Full Text] [Related]
7. Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Warburton EC; Koder T; Cho K; Massey PV; Duguid G; Barker GR; Aggleton JP; Bashir ZI; Brown MW Neuron; 2003 Jun; 38(6):987-96. PubMed ID: 12818183 [TBL] [Abstract][Full Text] [Related]
8. β-Adrenoceptors and synaptic plasticity in the perirhinal cortex. Laing M; Bashir ZI Neuroscience; 2014 Jul; 273(100):163-73. PubMed ID: 24836853 [TBL] [Abstract][Full Text] [Related]
9. Blocking L-type calcium channels enhances long-term depression induced by low-frequency stimulation at hippocampal CA1 synapses. Udagawa R; Nakano M; Kato N Brain Res; 2006 Dec; 1124(1):28-36. PubMed ID: 17084819 [TBL] [Abstract][Full Text] [Related]
10. Synaptic plasticity from amygdala to perirhinal cortex: a possible mechanism for emotional enhancement of visual recognition memory? Perugini A; Laing M; Berretta N; Aicardi G; Bashir ZI Eur J Neurosci; 2012 Aug; 36(4):2421-7. PubMed ID: 22616722 [TBL] [Abstract][Full Text] [Related]
11. Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. Wan H; Warburton EC; Zhu XO; Koder TJ; Park Y; Aggleton JP; Cho K; Bashir ZI; Brown MW Eur J Neurosci; 2004 Oct; 20(8):2214-24. PubMed ID: 15450101 [TBL] [Abstract][Full Text] [Related]
13. L-type VDCCs participate in behavioral-LTP and memory retention. Han YY; Wang XD; Liu L; Guo HM; Cong W; Yan WW; Huang JN; Xiao P; Li CH Neurobiol Learn Mem; 2017 Nov; 145():75-83. PubMed ID: 28866469 [TBL] [Abstract][Full Text] [Related]
14. A beta 25-35-induced depression of long-term potentiation in area CA1 in vivo and in vitro is attenuated by verapamil. Freir DB; Costello DA; Herron CE J Neurophysiol; 2003 Jun; 89(6):3061-9. PubMed ID: 12611943 [TBL] [Abstract][Full Text] [Related]
15. Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. Evers MR; Salmen B; Bukalo O; Rollenhagen A; Bösl MR; Morellini F; Bartsch U; Dityatev A; Schachner M J Neurosci; 2002 Aug; 22(16):7177-94. PubMed ID: 12177213 [TBL] [Abstract][Full Text] [Related]
16. The interactive role of CB1 receptors and L-type calcium channels in hippocampal long-term potentiation in rats. Komaki H; Saadat F; Shahidi S; Sarihi A; Hasanein P; Komaki A Brain Res Bull; 2017 May; 131():168-175. PubMed ID: 28442324 [TBL] [Abstract][Full Text] [Related]
17. Interfering with Fos expression in rat perirhinal cortex impairs recognition memory. Seoane A; Tinsley CJ; Brown MW Hippocampus; 2012 Nov; 22(11):2101-13. PubMed ID: 22532480 [TBL] [Abstract][Full Text] [Related]
18. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Brown MW; Barker GR; Aggleton JP; Warburton EC Neuropsychologia; 2012 Nov; 50(13):3122-40. PubMed ID: 22841990 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex. Banks PJ; Warburton EC; Brown MW; Bashir ZI Prog Mol Biol Transl Sci; 2014; 122():193-209. PubMed ID: 24484702 [TBL] [Abstract][Full Text] [Related]
20. Input-and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Ziakopoulos Z; Tillett CW; Brown MW; Bashir ZI Neuroscience; 1999; 92(2):459-72. PubMed ID: 10408597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]