BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19641493)

  • 1. Specific pathways prevent duplication-mediated genome rearrangements.
    Putnam CD; Hayes TK; Kolodner RD
    Nature; 2009 Aug; 460(7258):984-9. PubMed ID: 19641493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements.
    Chan JE; Kolodner RD
    PLoS Genet; 2011 May; 7(5):e1002089. PubMed ID: 21637792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae.
    Zhang C; Roberts TM; Yang J; Desai R; Brown GW
    DNA Repair (Amst); 2006 Mar; 5(3):336-46. PubMed ID: 16325482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-replication repair suppresses duplication-mediated genome instability.
    Putnam CD; Hayes TK; Kolodner RD
    PLoS Genet; 2010 May; 6(5):e1000933. PubMed ID: 20463880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination.
    Myung K; Datta A; Chen C; Kolodner RD
    Nat Genet; 2001 Jan; 27(1):113-6. PubMed ID: 11138010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants.
    Schmidt KH; Kolodner RD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18196-201. PubMed ID: 17114288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification.
    Chan JE; Kolodner RD
    PLoS Genet; 2012; 8(3):e1002539. PubMed ID: 22396658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying genome instability mediated by formation of foldback inversions in
    Li BZ; Putnam CD; Kolodner RD
    Elife; 2020 Aug; 9():. PubMed ID: 32762846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex.
    Mullen JR; Nallaseth FS; Lan YQ; Slagle CE; Brill SJ
    Mol Cell Biol; 2005 Jun; 25(11):4476-87. PubMed ID: 15899853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants.
    Kats ES; Enserink JM; Martinez S; Kolodner RD
    Mol Cell Biol; 2009 Oct; 29(19):5226-37. PubMed ID: 19635810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae.
    Smith S; Hwang JY; Banerjee S; Majeed A; Gupta A; Myung K
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):9039-44. PubMed ID: 15184655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.
    Myung K; Smith S; Kolodner RD
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15980-5. PubMed ID: 15514023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA repair pathway selection caused by defects in TEL1, SAE2, and de novo telomere addition generates specific chromosomal rearrangement signatures.
    Putnam CD; Pallis K; Hayes TK; Kolodner RD
    PLoS Genet; 2014 Apr; 10(4):e1004277. PubMed ID: 24699249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMO E3 ligase Mms21 prevents spontaneous DNA damage induced genome rearrangements.
    Liang J; Li BZ; Tan AP; Kolodner RD; Putnam CD; Zhou H
    PLoS Genet; 2018 Mar; 14(3):e1007250. PubMed ID: 29505562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae.
    Motegi A; Kuntz K; Majeed A; Smith S; Myung K
    Mol Cell Biol; 2006 Feb; 26(4):1424-33. PubMed ID: 16449653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways and Mechanisms that Prevent Genome Instability in
    Putnam CD; Kolodner RD
    Genetics; 2017 Jul; 206(3):1187-1225. PubMed ID: 28684602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants.
    Chen C; Kolodner RD
    Nat Genet; 1999 Sep; 23(1):81-5. PubMed ID: 10471504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae.
    Chakraborty U; George CM; Lyndaker AM; Alani E
    Genetics; 2016 Feb; 202(2):525-40. PubMed ID: 26680658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in DNA lesion bypass lead to spontaneous chromosomal rearrangements and increased cell death.
    Schmidt KH; Viebranz EB; Harris LB; Mirzaei-Souderjani H; Syed S; Medicus R
    Eukaryot Cell; 2010 Feb; 9(2):315-24. PubMed ID: 20008080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway.
    Sikdar N; Banerjee S; Zhang H; Smith S; Myung K
    PLoS Genet; 2008 Dec; 4(12):e1000290. PubMed ID: 19057669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.