These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19641904)

  • 1. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles.
    Chen Z; Luo S; Liu C; Cai Q
    Anal Bioanal Chem; 2009 Sep; 395(2):489-94. PubMed ID: 19641904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes.
    Wang Y; Yang F; Yang X
    Nanotechnology; 2010 May; 21(20):205502. PubMed ID: 20418604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles.
    Wei X; Qi L; Tan J; Liu R; Wang F
    Anal Chim Acta; 2010 Jun; 671(1-2):80-4. PubMed ID: 20541646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrophotometric determination of cysteine with gold nanoparticles stabilized with single-stranded oligonucleotides.
    Wang Y; Wang J; Yang F; Yang X
    Anal Sci; 2010; 26(5):545-9. PubMed ID: 20467128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions.
    Li B; Du Y; Dong S
    Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles.
    Shen Q; Li W; Tang S; Hu Y; Nie Z; Huang Y; Yao S
    Biosens Bioelectron; 2013 Mar; 41():663-8. PubMed ID: 23089325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H; Wang Y; Jin J; Yang R
    Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine detection by using gold nanoparticles and designed aptamer sequences.
    Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C
    Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation.
    Song Y; Feng D; Shao S; Liang J
    Talanta; 2018 Sep; 187():308-313. PubMed ID: 29853052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles.
    Jiao Y; Liu Q; Qiang H; Chen Z
    Mikrochim Acta; 2018 Sep; 185(10):452. PubMed ID: 30209628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles.
    Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C
    Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles.
    Liu ZD; Zhu HY; Zhao HX; Huang CZ
    Talanta; 2013 Mar; 106():255-60. PubMed ID: 23598125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-catalytic growth of unmodified gold nanoparticles as conductive bridges mediated gap-electrical signal transduction for DNA hybridization detection.
    Zhang J; Nie H; Wu Z; Yang Z; Zhang L; Xu X; Huang S
    Anal Chem; 2014 Jan; 86(2):1178-85. PubMed ID: 24313362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.
    Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M
    Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection.
    He H; Dai J; Duan Z; Zheng B; Meng Y; Guo Y; Dan Xiao
    Sci Rep; 2016 Aug; 6():30878. PubMed ID: 27477392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles.
    Ma X; Guo Z; Mao Z; Tang Y; Miao P
    Mikrochim Acta; 2017 Dec; 185(1):33. PubMed ID: 29594625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles.
    Lou T; Chen Z; Wang Y; Chen L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1568-73. PubMed ID: 21469714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.