These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 19641904)
41. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Fu X; Chen L; Li J Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162 [TBL] [Abstract][Full Text] [Related]
42. Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Chang CC; Chen CY; Chuang TL; Wu TH; Wei SC; Liao H; Lin CW Biosens Bioelectron; 2016 Apr; 78():200-205. PubMed ID: 26609945 [TBL] [Abstract][Full Text] [Related]
43. A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay. Cheng F; He Y; Xing XJ; Tan DD; Lin Y; Pang DW; Tang HW Analyst; 2015 Mar; 140(5):1572-7. PubMed ID: 25597304 [TBL] [Abstract][Full Text] [Related]
44. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Chen J; Li Z; Ge J; Yang R; Zhang L; Qu LB; Wang HQ; Zhang L Talanta; 2015 Jul; 139():226-32. PubMed ID: 25882430 [TBL] [Abstract][Full Text] [Related]
45. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771 [TBL] [Abstract][Full Text] [Related]
46. Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles. Zuo X; Wu H; Toh J; Li SF Talanta; 2010 Oct; 82(5):1642-6. PubMed ID: 20875557 [TBL] [Abstract][Full Text] [Related]
47. Label-free colorimetric sensing of cobalt(II) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine. Zhang Z; Zhang J; Lou T; Pan D; Chen L; Qu C; Chen Z Analyst; 2012 Jan; 137(2):400-5. PubMed ID: 22108778 [TBL] [Abstract][Full Text] [Related]
48. Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density. Deka J; Měch R; Ianeselli L; Amenitsch H; Cacho-Nerin F; Parisse P; Casalis L ACS Appl Mater Interfaces; 2015 Apr; 7(12):7033-40. PubMed ID: 25756758 [TBL] [Abstract][Full Text] [Related]
49. Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Wang J; Lu J; Su S; Gao J; Huang Q; Wang L; Huang W; Zuo X Biosens Bioelectron; 2015 Mar; 65():171-5. PubMed ID: 25461154 [TBL] [Abstract][Full Text] [Related]
50. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Sang Y; Zhang L; Li YF; Chen LQ; Xu JL; Huang CZ Anal Chim Acta; 2010 Feb; 659(1-2):224-8. PubMed ID: 20103128 [TBL] [Abstract][Full Text] [Related]
51. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720 [TBL] [Abstract][Full Text] [Related]
52. Simple colorimetric sensing of trace bleomycin using unmodified gold nanoparticles. Li F; Feng Y; Zhao C; Tang B Biosens Bioelectron; 2011 Jul; 26(11):4628-31. PubMed ID: 21664122 [TBL] [Abstract][Full Text] [Related]
53. A simple colorimetric pH alarm constructed from DNA-gold nanoparticles. Zheng B; Cheng S; Liu W; Lam MH; Liang H Anal Chim Acta; 2012 Sep; 741():106-13. PubMed ID: 22840711 [TBL] [Abstract][Full Text] [Related]
54. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Ghasemi F; Hormozi-Nezhad MR; Mahmoudi M Anal Chim Acta; 2015 Jul; 882():58-67. PubMed ID: 26043092 [TBL] [Abstract][Full Text] [Related]
55. A sensitive signal-on electrochemical assay for MTase activity using AuNPs amplification. He X; Su J; Wang Y; Wang K; Ni X; Chen Z Biosens Bioelectron; 2011 Oct; 28(1):298-303. PubMed ID: 21820304 [TBL] [Abstract][Full Text] [Related]
56. Self-aggregation of oligonucleotide-functionalized gold nanoparticles and its applications for highly sensitive detection of DNA. Song J; Li Z; Cheng Y; Liu C Chem Commun (Camb); 2010 Aug; 46(30):5548-50. PubMed ID: 20464025 [TBL] [Abstract][Full Text] [Related]
57. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor. Huang CC; Tseng WL Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648 [TBL] [Abstract][Full Text] [Related]
58. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Vasimalai N; Abraham John S Biosens Bioelectron; 2013 Apr; 42():267-72. PubMed ID: 23208097 [TBL] [Abstract][Full Text] [Related]
59. Colorimetric determination of cytosine-rich ssDNA by silver(I)-modulated glucose oxidase-catalyzed growth of gold nanoparticles. Liu BW; Wu YY; Huang PC; Wu FY Mikrochim Acta; 2019 Jun; 186(7):467. PubMed ID: 31240491 [TBL] [Abstract][Full Text] [Related]
60. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates. Huy GD; Zhang M; Zuo P; Ye BC Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]