These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 19641998)
1. Genomic diversity of germinating scutellum specific gene P23k in barley and wheat. Kouzaki H; Kidou S; Miura H; Kato K Genetica; 2009 Nov; 137(2):233-42. PubMed ID: 19641998 [TBL] [Abstract][Full Text] [Related]
2. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. Middleton CP; Senerchia N; Stein N; Akhunov ED; Keller B; Wicker T; Kilian B PLoS One; 2014; 9(3):e85761. PubMed ID: 24614886 [TBL] [Abstract][Full Text] [Related]
3. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. Fleury D; Luo MC; Dvorak J; Ramsay L; Gill BS; Anderson OD; You FM; Shoaei Z; Deal KR; Langridge P BMC Genomics; 2010 Jun; 11():382. PubMed ID: 20553621 [TBL] [Abstract][Full Text] [Related]
4. Analysis of intraspecies diversity in wheat and barley genomes identifies breakpoints of ancient haplotypes and provides insight into the structure of diploid and hexaploid triticeae gene pools. Wicker T; Krattinger SG; Lagudah ES; Komatsuda T; Pourkheirandish M; Matsumoto T; Cloutier S; Reiser L; Kanamori H; Sato K; Perovic D; Stein N; Keller B Plant Physiol; 2009 Jan; 149(1):258-70. PubMed ID: 19011002 [TBL] [Abstract][Full Text] [Related]
5. RNA-Seq-based DNA marker analysis of the genetics and molecular evolution of Triticeae species. Sato K; Yoshida K; Takumi S Funct Integr Genomics; 2021 Nov; 21(5-6):535-542. PubMed ID: 34405283 [TBL] [Abstract][Full Text] [Related]
6. Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. Oikawa A; Rahman A; Yamashita T; Taira H; Kidou S J Exp Bot; 2007; 58(10):2617-25. PubMed ID: 17586608 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional divergence of the Mpc1 genes in wheat and barley. Strygina KV; Khlestkina EK BMC Evol Biol; 2019 Feb; 19(Suppl 1):45. PubMed ID: 30813913 [TBL] [Abstract][Full Text] [Related]
8. Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat. Faris J; Sirikhachornkit A; Haselkorn R; Gill B; Gornicki P Mol Biol Evol; 2001 Sep; 18(9):1720-33. PubMed ID: 11504852 [TBL] [Abstract][Full Text] [Related]
9. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Wicker T; Mayer KF; Gundlach H; Martis M; Steuernagel B; Scholz U; Simková H; Kubaláková M; Choulet F; Taudien S; Platzer M; Feuillet C; Fahima T; Budak H; Dolezel J; Keller B; Stein N Plant Cell; 2011 May; 23(5):1706-18. PubMed ID: 21622801 [TBL] [Abstract][Full Text] [Related]
10. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. Danilova TV; Poland J; Friebe B Theor Appl Genet; 2019 Nov; 132(11):3129-3141. PubMed ID: 31535163 [TBL] [Abstract][Full Text] [Related]
11. Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Feuillet C; Penger A; Gellner K; Mast A; Keller B Plant Physiol; 2001 Mar; 125(3):1304-13. PubMed ID: 11244111 [TBL] [Abstract][Full Text] [Related]
13. Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Gu YQ; Anderson OD; Londeorë CF; Kong X; Chibbar RN; Lazo GR Genome; 2003 Dec; 46(6):1084-97. PubMed ID: 14663527 [TBL] [Abstract][Full Text] [Related]
14. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Huang S; Spielmeyer W; Lagudah ES; Munns R J Exp Bot; 2008; 59(4):927-37. PubMed ID: 18325922 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Cho S; Garvin DF; Muehlbauer GJ Genetics; 2006 Feb; 172(2):1277-85. PubMed ID: 16322516 [TBL] [Abstract][Full Text] [Related]
16. Development of oat-based markers from barley and wheat microsatellites. Oliver RE; Obert DE; Hu G; Bonman JM; O'Leary-Jepsen E; Jackson EW Genome; 2010 Jun; 53(6):458-71. PubMed ID: 20555435 [TBL] [Abstract][Full Text] [Related]
17. A new insight into application for barley chromosome addition lines of common wheat: achievement of stigmasterol accumulation. Tang J; Ohyama K; Kawaura K; Hashinokuchi H; Kamiya Y; Suzuki M; Muranaka T; Ogihara Y Plant Physiol; 2011 Nov; 157(3):1555-67. PubMed ID: 21951468 [TBL] [Abstract][Full Text] [Related]
18. High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections. Haseneyer G; Ravel C; Dardevet M; Balfourier F; Sourdille P; Charmet G; Brunel D; Sauer S; Geiger HH; Graner A; Stracke S Theor Appl Genet; 2008 Aug; 117(3):321-31. PubMed ID: 18488187 [TBL] [Abstract][Full Text] [Related]
19. Sequence differences in the seed dormancy gene Qsd1 among various wheat genomes. Onishi K; Yamane M; Yamaji N; Tokui M; Kanamori H; Wu J; Komatsuda T; Sato K BMC Genomics; 2017 Jun; 18(1):497. PubMed ID: 28662630 [TBL] [Abstract][Full Text] [Related]