These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1964202)

  • 41. Congenital nephrogenic diabetes insipidus in a baby girl.
    Schreiner RL; Skafish PR; Anand SK; Northway JD
    Arch Dis Child; 1978 Nov; 53(11):906-8. PubMed ID: 215090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pharmacological modulation of secondary mediator systems--cyclic AMP and cyclic GMP--on inflammatory hyperalgesia.
    Cunha FQ; Teixeira MM; Ferreira SH
    Br J Pharmacol; 1999 Jun; 127(3):671-8. PubMed ID: 10401557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rolipram, a phosphodiesterase 4 inhibitor, prevented cancellous and cortical bone loss by inhibiting endosteal bone resorption and maintaining the elevated periosteal bone formation in adult ovariectomized rats.
    Yao W; Tian XY; Chen J; Setterberg RB; Lundy MW; Chmielzwski P; Froman CA; Jee WS
    J Musculoskelet Neuronal Interact; 2007; 7(2):119-30. PubMed ID: 17627081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression of lipopolysaccharide-induced tumor necrosis factor-alpha generation from human peripheral blood monocytes by inhibitors of phosphodiesterase 4: interaction with stimulants of adenylyl cyclase.
    Seldon PM; Barnes PJ; Meja K; Giembycz MA
    Mol Pharmacol; 1995 Oct; 48(4):747-57. PubMed ID: 7476903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Congenital nephrogenic diabetes insipidus in an adult.
    Ishii H; Mizuno K; Niimura S; Haga H; Takahashi M; Watanabe Y; Tanaka K; Ogata M; Tanaka N; Fukuchi S
    Intern Med; 1993 Feb; 32(2):133-8. PubMed ID: 8507924
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Response to ADH in nephrogenic diabetes insipidus type 2.
    Yasuda T; Nakajima H
    J Pediatr; 1984 Nov; 105(5):850-1. PubMed ID: 6094779
    [No Abstract]   [Full Text] [Related]  

  • 47. Brain injury and inflammation. A putative role of TNF alpha.
    Arvin B; Neville LF; Barone FC; Feuerstein GZ
    Ann N Y Acad Sci; 1995 Sep; 765():62-71; discussion 98-9. PubMed ID: 7486645
    [No Abstract]   [Full Text] [Related]  

  • 48. Congenital nephrogenic diabetes insipidus.
    Koepp P
    Arch Dis Child; 1979 Oct; 54(10):807. PubMed ID: 507907
    [No Abstract]   [Full Text] [Related]  

  • 49. Prostaglandin inhibitors in treatment of nephrogenic diabetes insipidus.
    Garin EH; Richard GA
    J Pediatr; 1983 Jul; 103(1):174-5. PubMed ID: 6864392
    [No Abstract]   [Full Text] [Related]  

  • 50. Coagulation factor responsiveness in nephrogenic diabetes insipidus.
    Ohzeki T; Sunaguchi M; Tsunei M; Shinzawa T; Hanaki K; Shiraki K; Shishido H
    J Pediatr; 1988 Oct; 113(4):790-1. PubMed ID: 3139857
    [No Abstract]   [Full Text] [Related]  

  • 51. Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit.
    Cheung PW; Bouley R; Brown D
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():175-194. PubMed ID: 31561739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F; Uchida S
    Clin Exp Nephrol; 2018 Jun; 22(3):501-507. PubMed ID: 29478202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update.
    Milano S; Carmosino M; Gerbino A; Svelto M; Procino G
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29125546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roflumilast and aquaporin-2 regulation in rat renal inner medullary collecting duct.
    Umejiego EN; Wang Y; Knepper MA; Chou CL
    Physiol Rep; 2017 Jan; 5(2):. PubMed ID: 28108651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases.
    Vukićević T; Schulz M; Faust D; Klussmann E
    Front Pharmacol; 2016; 7():23. PubMed ID: 26903868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration.
    Nomura N; Nunes P; Bouley R; Nair AV; Shaw S; Ueda E; Pathomthongtaweechai N; Lu HA; Brown D
    Am J Physiol Cell Physiol; 2014 Oct; 307(7):C597-605. PubMed ID: 24944200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Urinary concentration: different ways to open and close the tap.
    Bockenhauer D; Bichet DG
    Pediatr Nephrol; 2014 Aug; 29(8):1297-303. PubMed ID: 23736674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment.
    Moeller HB; Rittig S; Fenton RA
    Endocr Rev; 2013 Apr; 34(2):278-301. PubMed ID: 23360744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.
    Brown D; Bouley R; Păunescu TG; Breton S; Lu HA
    Am J Physiol Cell Physiol; 2012 May; 302(10):C1421-33. PubMed ID: 22460710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell culture models and animal models for studying the patho-physiological role of renal aquaporins.
    Tamma G; Procino G; Svelto M; Valenti G
    Cell Mol Life Sci; 2012 Jun; 69(12):1931-46. PubMed ID: 22189994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.