BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19642694)

  • 41. Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis.
    Qiao Y; Wang B; Ji Y; Xu F; Zong P; Zhang J; Tian Y
    Bioresour Technol; 2019 Apr; 278():287-295. PubMed ID: 30708332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis.
    Chen Y; Li C; Zhang L; Chen Q; Zhang S; Xiang J; Hu S; Wang Y; Hu X
    Chemosphere; 2023 Sep; 336():139248. PubMed ID: 37330062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.
    Chiang HL; Lin KH; Lai MH; Chen TC; Ma SY
    J Hazard Mater; 2007 Oct; 149(1):151-9. PubMed ID: 17467900
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in organic matter composition during composting of two digested sewage sludges.
    Hernández T; Masciandaro G; Moreno JI; García C
    Waste Manag; 2006; 26(12):1370-6. PubMed ID: 16356705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.
    Huang Y; Wei Z; Yin X; Wu C
    Bioresour Technol; 2012 Jan; 103(1):470-6. PubMed ID: 22055106
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts.
    Mondini C; Sánchez-Monedero MA; Sinicco T; Leita L
    J Environ Qual; 2006; 35(6):2313-20. PubMed ID: 17071902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in the chemical composition of water-extractable organic matter during composting: distribution between stable and labile organic matter pools.
    Said-Pullicino D; Kaiser K; Guggenberger G; Gigliotti G
    Chemosphere; 2007 Feb; 66(11):2166-76. PubMed ID: 17125814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.
    Vandecasteele B; Boogaerts C; Vandaele E
    Waste Manag; 2016 Dec; 58():169-180. PubMed ID: 27650630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pyrolysis treatment of oil sludge and model-free kinetics analysis.
    Liu J; Jiang X; Zhou L; Han X; Cui Z
    J Hazard Mater; 2009 Jan; 161(2-3):1208-15. PubMed ID: 18514401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation of the thermogravimetry analysis of three non-wood pulps.
    Barneto AG; Carmona JA; Alfonso JE; Serrano RS
    Bioresour Technol; 2010 May; 101(9):3220-9. PubMed ID: 20071163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical simulation of the pyrolysis zone in a downdraft gasification process.
    Jaojaruek K; Kumar S
    Bioresour Technol; 2009 Dec; 100(23):6052-8. PubMed ID: 19631526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CO2 as a carbon neutral fuel source via enhanced biomass gasification.
    Butterman HC; Castaldi MJ
    Environ Sci Technol; 2009 Dec; 43(23):9030-7. PubMed ID: 19943684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production.
    Torri C; Samorì C; Adamiano A; Fabbri D; Faraloni C; Torzillo G
    Bioresour Technol; 2011 Sep; 102(18):8707-13. PubMed ID: 21345670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A full-scale study of treatment of pig slurry by composting: kinetic changes in chemical and microbial properties.
    Ros M; García C; Hernández T
    Waste Manag; 2006; 26(10):1108-18. PubMed ID: 16293406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient behavior of devolatilization and char reaction during steam gasification of biomass.
    Moon J; Lee J; Lee U; Hwang J
    Bioresour Technol; 2013 Apr; 133():429-36. PubMed ID: 23454389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.
    Yang C; Jia L; Su S; Tian Z; Song Q; Fang W; Chen C; Liu G
    Bioresour Technol; 2012 Apr; 110():676-81. PubMed ID: 22336747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerobic composting of waste activated sludge: kinetic analysis for microbiological reaction and oxygen consumption.
    Yamada Y; Kawase Y
    Waste Manag; 2006; 26(1):49-61. PubMed ID: 15978796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.