BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19643419)

  • 41. Intervertebral disc internal deformation measured by displacements under applied loading with MRI at 3T.
    Chan DD; Neu CP
    Magn Reson Med; 2014 Mar; 71(3):1231-7. PubMed ID: 23650022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anatomical evaluation and stress distribution of intact canine femur.
    Verim O; Tasgetiren S; Er MS; Ozdemir V; Yuran AF
    Int J Med Robot; 2013 Mar; 9(1):103-8. PubMed ID: 22987569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between the mineral content of human trabecular bone and selected parameters determined from fatigue test at stepwise-increasing amplitude.
    Mazurkiewicz A; Topoliński T
    Acta Bioeng Biomech; 2017; 19(3):19-26. PubMed ID: 29205222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strain distribution in the proximal human femoral metaphysis.
    Cristofolini L; Juszczyk M; Taddei F; Viceconti M
    Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wedge indentation fracture of cortical bone: experimental data and predictions.
    Kasiri S; Reilly G; Taylor D
    J Biomech Eng; 2010 Aug; 132(8):081009. PubMed ID: 20670058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Volume mesh generation and finite element analysis of trabecular bone magnetic resonance images.
    Alberich-Bayarri A; Moratal D; Martí-Bonmatí L; Salmerón-Sánchez M; Vallés-Lluch A; Nieto-Charques L; Rieta JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1603-6. PubMed ID: 18002278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implications of resolution and noise for in vivo micro-MRI of trabecular bone.
    Li CQ; Magland JF; Rajapakse CS; Guo XE; Zhang XH; Vasilic B; Wehrli FW
    Med Phys; 2008 Dec; 35(12):5584-94. PubMed ID: 19175116
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression.
    Gillard F; Boardman R; Mavrogordato M; Hollis D; Sinclair I; Pierron F; Browne M
    J Mech Behav Biomed Mater; 2014 Jan; 29():480-99. PubMed ID: 24212359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-lapsed microstructural imaging of bone failure behavior.
    Nazarian A; Müller R
    J Biomech; 2004 Jan; 37(1):55-65. PubMed ID: 14672568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MRI skin segmentation for the virtual deformation of the breast under mammographic compression.
    Solves Llorens JA; Monserrat C; Rupérez MJ; Naranjo V; Alajami M; Feliu E; García M; Lloret M
    Stud Health Technol Inform; 2012; 173():483-9. PubMed ID: 22357041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressive mechanical properties of demineralized and deproteinized cancellous bone.
    Chen PY; McKittrick J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):961-73. PubMed ID: 21783106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphology-based prediction of elastic properties of trabecular bone samples.
    Cosmi F
    Acta Bioeng Biomech; 2009; 11(1):3-9. PubMed ID: 19736904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mixed experimental and numerical approach for characterizing the biomechanical response of the human leg under elastic compression.
    Avril S; Bouten L; Dubuis L; Drapier S; Pouget JF
    J Biomech Eng; 2010 Mar; 132(3):031006. PubMed ID: 20459194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting trabecular bone elastic properties from measures of bone volume fraction and fabric on the basis of micromagnetic resonance images.
    Wald MJ; Magland JF; Rajapakse CS; Bhagat YA; Wehrli FW
    Magn Reson Med; 2012 Aug; 68(2):463-73. PubMed ID: 22162036
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Material properties of trabecular bone structures.
    Birnbaum K; Sindelar R; Gaertner JR; Wirtz DC
    Surg Radiol Anat; 2001; 23(6):399-407. PubMed ID: 11963622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds.
    Bormann T; Schulz G; Deyhle H; Beckmann F; de Wild M; Küffer J; Münch C; Hoffmann W; Müller B
    Acta Biomater; 2014 Feb; 10(2):1024-34. PubMed ID: 24257506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Digital image correlation techniques for strain measurement in a variety of biomechanical test models.
    Hensley S; Christensen M; Small S; Archer D; Lakes E; Rogge R
    Acta Bioeng Biomech; 2017; 19(3):187-195. PubMed ID: 29205227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-view stereo analysis reveals anisotropy of prestrain, deformation, and growth in living skin.
    Buganza Tepole A; Gart M; Purnell CA; Gosain AK; Kuhl E
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1007-19. PubMed ID: 25634600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new device and method for measuring the elastic modulus of single trabeculae.
    Lorenzetti S; Carretta R; Müller R; Stüssi E
    Med Eng Phys; 2011 Oct; 33(8):993-1000. PubMed ID: 21531605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.