These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 19643429)

  • 41. Micropatterned multienzyme devices with adjustable amounts of immobilized enzymes.
    Burchardt M; Wittstock G
    Langmuir; 2013 Dec; 29(48):15090-9. PubMed ID: 24200032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose.
    Kaya A; Du X; Liu Z; Lu JW; Morris JR; Glasser WG; Heinze T; Esker AR
    Biomacromolecules; 2009 Sep; 10(9):2451-9. PubMed ID: 19634912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calmodulin-mediated reversible immobilization of enzymes.
    Daunert S; Bachas LG; Schauer-Vukasinovic V; Gregory KJ; Schrift G; Deo S
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):20-7. PubMed ID: 17276043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrazide-functionalized poly(2-hydroxyethyl methacrylate) microspheres for immobilization of horseradish peroxidase.
    Horák D; Karpísek M; Turková J; Benes M
    Biotechnol Prog; 1999; 15(2):208-15. PubMed ID: 10194396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of polarized spectroscopy as a tool for examining the microstructure of cellulosic textile fibers.
    Garside P; Wyeth P
    Appl Spectrosc; 2007 May; 61(5):523-9. PubMed ID: 17555622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol-gel host materials.
    Wei Y; Dong H; Xu J; Feng Q
    Chemphyschem; 2002 Sep; 3(9):802-8. PubMed ID: 12436909
    [No Abstract]   [Full Text] [Related]  

  • 47. Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels.
    Aucoin MG; Erhardt FA; Legge RL
    Biotechnol Bioeng; 2004 Mar; 85(6):647-55. PubMed ID: 14966806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions.
    Logan TC; Clark DS; Stachowiak TB; Svec F; Fréchet JM
    Anal Chem; 2007 Sep; 79(17):6592-8. PubMed ID: 17658765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.
    Torabi SF; Khajeh K; Ghasempur S; Ghaemi N; Siadat SO
    J Biotechnol; 2007 Aug; 131(2):111-20. PubMed ID: 17658643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA.
    Horvath AE; Lindström T; Laine J
    Langmuir; 2006 Jan; 22(2):824-30. PubMed ID: 16401137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity.
    Yang S; Jia WZ; Qian QY; Zhou YG; Xia XH
    Anal Chem; 2009 May; 81(9):3478-84. PubMed ID: 19354263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption of low charge density polyelectrolytes to an oppositely charged porous substrate.
    Horvath AT; Horvath AE; Lindström T; Wågberg L
    Langmuir; 2008 Jun; 24(13):6585-94. PubMed ID: 18507419
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase.
    Lane SM; Kuang Z; Yom J; Arifuzzaman S; Genzer J; Farmer B; Naik R; Vaia RA
    Biomacromolecules; 2011 May; 12(5):1822-30. PubMed ID: 21438540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Comparative study of horseradish peroxidase immobilization on modification of a gold surface using a surface plasmon resonance method].
    Avilov SV; Ver'ovka SV; Chehel' VI; Shyrshov IuM; Demchenko OP
    Ukr Biokhim Zh (1999); 2001; 73(2):44-50. PubMed ID: 11642043
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A
    J Colloid Interface Sci; 2006 Sep; 301(1):333-6. PubMed ID: 16777121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimizing immobilization of avidin on surface-modified magnetic nanoparticles: characterization and application of protein-immobilized nanoparticles.
    Yang T; Sun S; Ma M; Lin Q; Zhang L; Li Y; Luo F
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2023-34. PubMed ID: 26224655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction.
    Zhang Y; Zhang J; Huang X; Zhou X; Wu H; Guo S
    Small; 2012 Jan; 8(1):154-9. PubMed ID: 22038754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane in removing of phenol from water.
    Vasileva N; Godjevargova T; Ivanova D; Gabrovska K
    Int J Biol Macromol; 2009 Mar; 44(2):190-4. PubMed ID: 19133289
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers With Poly(Acrylic Acid).
    Riccardi CM; Kasi RM; Kumar CV
    Methods Enzymol; 2017; 590():475-500. PubMed ID: 28411649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Model simulations of the adsorption of statherin to solid surfaces: Effects of surface charge and hydrophobicity.
    Skepö M
    J Chem Phys; 2008 Nov; 129(18):185101. PubMed ID: 19045429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.