These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19643537)

  • 1. Application of natural and modified hectorite clays as adsorbents to removal of Cr(VI) from aqueous solution--thermodynamic and equilibrium study.
    Guerra DL; Viana RR; Airoldi C
    J Hazard Mater; 2009 Dec; 172(1):507-14. PubMed ID: 19643537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of thorium cation on modified clays MTTZ derivative.
    Guerra DL; Viana RR; Airoldi C
    J Hazard Mater; 2009 Sep; 168(2-3):1504-11. PubMed ID: 19372006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Cr (VI) from aqueous solutions by Acacia nilotica bark.
    Rani N; Gupta A; Yadav AK
    Environ Technol; 2006 Jun; 27(6):597-602. PubMed ID: 16865915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation and removal of chromium from aqueous solution by white, yellow and red UAE sand.
    Khamis M; Jumean F; Abdo N
    J Hazard Mater; 2009 Sep; 169(1-3):948-52. PubMed ID: 19443116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer silicates modified with 1,4-bis(3-aminopropyl)piperazine for the removal of Th(IV), U(VI) and Eu(III) from aqueous media.
    Guerra DL; Pinto AA; Viana RR; Airoldi C
    J Hazard Mater; 2009 Nov; 171(1-3):514-23. PubMed ID: 19604631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption mechanism of chromium(III) using biosorbents of Jatropha curcas L.
    Gonçalves AC; Nacke H; Schwantes D; Campagnolo MA; Miola AJ; Tarley CRT; Dragunski DC; Suquila FAC
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21778-21790. PubMed ID: 28770506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions.
    Zhang L; Luo H; Liu P; Fang W; Geng J
    Int J Biol Macromol; 2016 Jun; 87():586-96. PubMed ID: 26993532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
    Mohan D; Rajput S; Singh VK; Steele PH; Pittman CU
    J Hazard Mater; 2011 Apr; 188(1-3):319-33. PubMed ID: 21354700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay.
    Sari A; Tuzen M; Soylak M
    J Hazard Mater; 2007 Jun; 144(1-2):41-6. PubMed ID: 17079075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents.
    Liu SS; Chen YZ; De Zhang L; Hua GM; Xu W; Li N; Zhang Y
    J Hazard Mater; 2011 Jun; 190(1-3):723-8. PubMed ID: 21514991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons.
    Ghosh PK
    J Hazard Mater; 2009 Nov; 171(1-3):116-22. PubMed ID: 19553008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents.
    Gasser MS; Morad GA; Aly HF
    J Hazard Mater; 2007 Apr; 142(1-2):118-29. PubMed ID: 16982142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: marine macroalgae and agricultural by-products.
    Wang XS; Li ZZ; Sun C
    J Hazard Mater; 2008 May; 153(3):1176-84. PubMed ID: 17997216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of hectorite by organofunctionalization for use in removing U(VI) from aqueous media: thermodynamic approach.
    Guerra DL; Airoldi C; Viana RR
    J Environ Radioact; 2010 Feb; 101(2):122-33. PubMed ID: 19828216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.
    Chen S; Yue Q; Gao B; Xu X
    J Colloid Interface Sci; 2010 Sep; 349(1):256-64. PubMed ID: 20576272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cr(VI) from industrial wastewaters by adsorption Part I: determination of optimum conditions.
    Uysal M; Ar I
    J Hazard Mater; 2007 Oct; 149(2):482-91. PubMed ID: 17513041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: thermodynamic of cation-basic interactions.
    Guerra DL; Leidens VL; Viana RR; Airoldi C
    J Hazard Mater; 2010 Aug; 180(1-3):683-92. PubMed ID: 20478656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions.
    Demirbas E; Kobya M; Konukman AE
    J Hazard Mater; 2008 Jun; 154(1-3):787-94. PubMed ID: 18068295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles.
    Hu J; Chen G; Lo IM
    Water Res; 2005 Nov; 39(18):4528-36. PubMed ID: 16146639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.