These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 19643631)
1. Retinal phosphenes and discrete dark noises in rods: a new biophysical framework. Bókkon I; Vimal RL J Photochem Photobiol B; 2009 Sep; 96(3):255-9. PubMed ID: 19643631 [TBL] [Abstract][Full Text] [Related]
2. Protein fluctuations as the possible origin of the thermal activation of rod photoreceptors in the dark. Lórenz-Fonfría VA; Furutani Y; Ota T; Ido K; Kandori H J Am Chem Soc; 2010 Apr; 132(16):5693-703. PubMed ID: 20356096 [TBL] [Abstract][Full Text] [Related]
3. On the molecular origin of photoreceptor noise. Barlow RB; Birge RR; Kaplan E; Tallent JR Nature; 1993 Nov; 366(6450):64-6. PubMed ID: 8232538 [TBL] [Abstract][Full Text] [Related]
4. Phosphene phenomenon: a new concept. Bókkon I Biosystems; 2008 May; 92(2):168-74. PubMed ID: 18358594 [TBL] [Abstract][Full Text] [Related]
5. Effect of eye closures and openings on photostasis in albino rats. Williams TP; Henrich S; Reiser M Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):603-9. PubMed ID: 9501872 [TBL] [Abstract][Full Text] [Related]
6. Transmission of single photon signals through a binary synapse in the mammalian retina. Berntson A; Smith RG; Taylor WR Vis Neurosci; 2004; 21(5):693-702. PubMed ID: 15683557 [TBL] [Abstract][Full Text] [Related]
7. Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods. Ala-Laurila P; Donner K; Crouch RK; Cornwall MC J Physiol; 2007 Nov; 585(Pt 1):57-74. PubMed ID: 17884920 [TBL] [Abstract][Full Text] [Related]
8. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Salari V; Scholkmann F; Vimal RLP; Császár N; Aslani M; Bókkon I Prog Retin Eye Res; 2017 Sep; 60():101-119. PubMed ID: 28729002 [TBL] [Abstract][Full Text] [Related]
9. Rejection of the biophoton hypothesis on the origin of photoreceptor dark noise. Govardovskii VI; Astakhova LA; Rotov AY; Firsov ML J Gen Physiol; 2019 Jul; 151(7):887-897. PubMed ID: 30992369 [TBL] [Abstract][Full Text] [Related]
10. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission? Salari V; Scholkmann F; Bokkon I; Shahbazi F; Tuszynski J PLoS One; 2016; 11(3):e0148336. PubMed ID: 26950936 [TBL] [Abstract][Full Text] [Related]
11. pH and rate of "dark" events in toad retinal rods: test of a hypothesis on the molecular origin of photoreceptor noise. Firsov ML; Donner K; Govardovskii VI J Physiol; 2002 Mar; 539(Pt 3):837-46. PubMed ID: 11897853 [TBL] [Abstract][Full Text] [Related]
12. Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock. Ribelayga C; Mangel SC Vis Neurosci; 2007; 24(3):333-44. PubMed ID: 17640444 [TBL] [Abstract][Full Text] [Related]
13. Transmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina. Taylor WR; Smith RG Vision Res; 2004 Dec; 44(28):3269-76. PubMed ID: 15535994 [TBL] [Abstract][Full Text] [Related]
14. Cone-rod dependence in the rat retina: variation with the rate of rod damage. Chrysostomou V; Valter K; Stone J Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251 [TBL] [Abstract][Full Text] [Related]
15. Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids. Narici L; Paci M; Brunetti V; Rinaldi A; Sannita WG; De Martino A Free Radic Biol Med; 2012 Aug; 53(3):482-7. PubMed ID: 22634396 [TBL] [Abstract][Full Text] [Related]
16. Measurement of thermal contribution to photoreceptor sensitivity. Koskelainen A; Ala-Laurila P; Fyhrquist N; Donner K Nature; 2000 Jan; 403(6766):220-3. PubMed ID: 10646610 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous and visible light-induced ultraweak photon emission from rat eyes. Wang C; Bókkon I; Dai J; Antal I Brain Res; 2011 Jan; 1369():1-9. PubMed ID: 21034725 [TBL] [Abstract][Full Text] [Related]
18. The frequency of isomerization-like 'dark' events in rhodopsin and porphyropsin rods of the bull-frog retina. Donner K; Firsov ML; Govardovskii VI J Physiol; 1990 Sep; 428():673-92. PubMed ID: 2231428 [TBL] [Abstract][Full Text] [Related]
19. Rod and cone photoreceptors: molecular basis of the difference in their physiology. Kawamura S; Tachibanaki S Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):369-77. PubMed ID: 18514002 [TBL] [Abstract][Full Text] [Related]
20. Estimation of the number of biophotons involved in the visual perception of a single-object image: biophoton intensity can be considerably higher inside cells than outside. Bókkon I; Salari V; Tuszynski JA; Antal I J Photochem Photobiol B; 2010 Sep; 100(3):160-6. PubMed ID: 20584615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]