These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19643681)

  • 1. Marine aerobic biofilm as biocathode catalyst.
    Erable B; Vandecandelaere I; Faimali M; Delia ML; Etcheverry L; Vandamme P; Bergel A
    Bioelectrochemistry; 2010 Apr; 78(1):51-6. PubMed ID: 19643681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes.
    Pons L; Délia ML; Bergel A
    Bioresour Technol; 2011 Feb; 102(3):2678-83. PubMed ID: 21131196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial diversity of the cultivable fraction of a marine electroactive biofilm.
    Vandecandelaere I; Nercessian O; Faimali M; Segaert E; Mollica A; Achouak W; De Vos P; Vandamme P
    Bioelectrochemistry; 2010 Apr; 78(1):62-6. PubMed ID: 19666244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical activity and bacterial diversity of natural marine biofilm in laboratory closed-systems.
    Faimali M; Chelossi E; Pavanello G; Benedetti A; Vandecandelaere I; De Vos P; Vandamme P; Mollica A
    Bioelectrochemistry; 2010 Apr; 78(1):30-8. PubMed ID: 19481980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater.
    Parot S; Vandecandelaere I; Cournet A; Délia ML; Vandamme P; Bergé M; Roques C; Bergel A
    Bioresour Technol; 2011 Jan; 102(1):304-11. PubMed ID: 20673715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling natural biofilms: a new route to build efficient microbial anodes.
    Erable B; Roncato MA; Achouak W; Bergel A
    Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.
    Yi H; Nevin KP; Kim BC; Franks AE; Klimes A; Tender LM; Lovley DR
    Biosens Bioelectron; 2009 Aug; 24(12):3498-503. PubMed ID: 19487117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost.
    Parot S; Nercessian O; Delia ML; Achouak W; Bergel A
    J Appl Microbiol; 2009 Apr; 106(4):1350-9. PubMed ID: 19228259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES).
    Srikanth S; Reddy MV; Mohan SV
    Bioresour Technol; 2012 Dec; 125():291-9. PubMed ID: 23037883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.
    Torres CI; Kato Marcus A; Rittmann BE
    Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer process from marine biofilms to graphite electrodes in seawater.
    Xu F; Duan J; Hou B
    Bioelectrochemistry; 2010 Apr; 78(1):92-5. PubMed ID: 19840906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.
    Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A
    Bioresour Technol; 2012 Jun; 114():334-41. PubMed ID: 22483348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of electro-active biofilms.
    Erable B; Duţeanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen.
    Carbajosa S; Malki M; Caillard R; Lopez MF; Palomares FJ; Martín-Gago JA; Rodríguez N; Amils R; Fernández VM; De Lacey AL
    Biosens Bioelectron; 2010 Oct; 26(2):877-80. PubMed ID: 20678913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forming electrochemically active biofilms from garden compost under chronoamperometry.
    Parot S; Délia ML; Bergel A
    Bioresour Technol; 2008 Jul; 99(11):4809-16. PubMed ID: 17988862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.