These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 19643761)
1. Phylogenetic evidence for extensive horizontal gene transfer of type III secretion system genes among enterobacterial plant pathogens. Naum M; Brown EW; Mason-Gamer RJ Microbiology (Reading); 2009 Oct; 155(Pt 10):3187-3199. PubMed ID: 19643761 [TBL] [Abstract][Full Text] [Related]
2. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Brady CL; Cleenwerck I; Denman S; Venter SN; Rodríguez-Palenzuela P; Coutinho TA; De Vos P Int J Syst Evol Microbiol; 2012 Jul; 62(Pt 7):1592-1602. PubMed ID: 21890733 [TBL] [Abstract][Full Text] [Related]
3. Is a robust phylogeny of the enterobacterial plant pathogens attainable? Naum M; Brown EW; Mason-Gamer RJ Cladistics; 2011 Feb; 27(1):80-93. PubMed ID: 34969206 [TBL] [Abstract][Full Text] [Related]
4. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the enterobacteriaceae? Naum M; Brown EW; Mason-Gamer RJ J Mol Evol; 2008 Jun; 66(6):630-42. PubMed ID: 18504519 [TBL] [Abstract][Full Text] [Related]
5. Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae. Seth-Smith HM; Fookes MC; Okoro CK; Baker S; Harris SR; Scott P; Pickard D; Quail MA; Churcher C; Sanders M; Harmse J; Dougan G; Parkhill J; Thomson NR J Bacteriol; 2012 Mar; 194(6):1494-504. PubMed ID: 22247511 [TBL] [Abstract][Full Text] [Related]
6. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Naushad HS; Lee B; Gupta RS Int J Syst Evol Microbiol; 2014 Feb; 64(Pt 2):366-383. PubMed ID: 24505075 [TBL] [Abstract][Full Text] [Related]
7. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Kim HS; Ma B; Perna NT; Charkowski AO Appl Environ Microbiol; 2009 Jul; 75(13):4539-49. PubMed ID: 19411432 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Smits TH; Rezzonico F; López MM; Blom J; Goesmann A; Frey JE; Duffy B Syst Appl Microbiol; 2013 Oct; 36(7):449-56. PubMed ID: 23726521 [TBL] [Abstract][Full Text] [Related]
9. Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer. Kirzinger MW; Butz CJ; Stavrinides J Mol Genet Genomics; 2015 Dec; 290(6):2075-88. PubMed ID: 25982743 [TBL] [Abstract][Full Text] [Related]
10. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. Patil PB; Sonti RV BMC Microbiol; 2004 Oct; 4():40. PubMed ID: 15473911 [TBL] [Abstract][Full Text] [Related]
11. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Merda D; Briand M; Bosis E; Rousseau C; Portier P; Barret M; Jacques MA; Fischer-Le Saux M Mol Ecol; 2017 Nov; 26(21):5939-5952. PubMed ID: 28869687 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Brown EW; Davis RM; Gouk C; van der Zwet T Int J Syst Evol Microbiol; 2000 Nov; 50 Pt 6():2057-2068. PubMed ID: 11155980 [TBL] [Abstract][Full Text] [Related]
13. Relationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences. Young JM; Park DC Syst Appl Microbiol; 2007 Jul; 30(5):343-54. PubMed ID: 17451899 [TBL] [Abstract][Full Text] [Related]
14. The Erwinia chrysanthemi EC16 hrp/hrc gene cluster encodes an active Hrp type III secretion system that is flanked by virulence genes functionally unrelated to the Hrp system. Rojas CM; Ham JH; Schechter LM; Kim JF; Beer SV; Collmer A Mol Plant Microbe Interact; 2004 Jun; 17(6):644-53. PubMed ID: 15195947 [TBL] [Abstract][Full Text] [Related]
15. Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Frederick RD; Ahmad M; Majerczak DR; Arroyo-Rodríguez AS; Manulis S; Coplin DL Mol Plant Microbe Interact; 2001 Oct; 14(10):1213-22. PubMed ID: 11605961 [TBL] [Abstract][Full Text] [Related]
16. The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. Kim JF; Wei ZM; Beer SV J Bacteriol; 1997 Mar; 179(5):1690-7. PubMed ID: 9045830 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomics reveals what makes an enterobacterial plant pathogen. Toth IK; Pritchard L; Birch PR Annu Rev Phytopathol; 2006; 44():305-36. PubMed ID: 16704357 [TBL] [Abstract][Full Text] [Related]
18. Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. Bogdanove AJ; Wei ZM; Zhao L; Beer SV J Bacteriol; 1996 Mar; 178(6):1720-30. PubMed ID: 8626302 [TBL] [Abstract][Full Text] [Related]
19. The orf4 gene of the enterobacterial ICE, R391, encodes a novel UV-inducible recombination directionality factor, Jef, involved in excision and transfer of the ICE. O'Halloran JA; McGrath BM; Pembroke JT FEMS Microbiol Lett; 2007 Jul; 272(1):99-105. PubMed ID: 17504243 [TBL] [Abstract][Full Text] [Related]
20. Plant Growth-Promoting Genes can Switch to be Virulence Factors via Horizontal Gene Transfer. Stritzler M; Soto G; Ayub N Microb Ecol; 2018 Oct; 76(3):579-583. PubMed ID: 29476343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]