These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19644168)

  • 1. An approximation algorithm for the minimum breakpoint linearization problem.
    Chen X; Cui Y
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):401-9. PubMed ID: 19644168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing the breakpoint distance between partially ordered genomes.
    Fu Z; Jiang T
    J Bioinform Comput Biol; 2007 Oct; 5(5):1087-101. PubMed ID: 17933012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene maps linearization using genomic rearrangement distances.
    Blin G; Blais E; Hermelin D; Guillon P; Blanchette M; El-Mabrouk N
    J Comput Biol; 2007 May; 14(4):394-407. PubMed ID: 17572019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.
    Xu AW
    J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCJ: a breakpoint-like distance that simplifies several rearrangement problems.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1318-29. PubMed ID: 21339538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakpoint medians and breakpoint phylogenies: a fixed-parameter approach.
    Gramm J; Niedermeier R
    Bioinformatics; 2002; 18 Suppl 2():S128-39. PubMed ID: 12385994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exact algorithm for the zero exemplar breakpoint distance problem.
    Zhu D; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1469-77. PubMed ID: 24407305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On Computing Breakpoint Distances for Genomes with Duplicate Genes.
    Shao M; Moret BME
    J Comput Biol; 2017 Jun; 24(6):571-580. PubMed ID: 27788022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the complexity of rearrangement problems under the breakpoint distance.
    Kováč J
    J Comput Biol; 2014 Jan; 21(1):1-15. PubMed ID: 24200391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2-Approximation Scheme for Sorting Signed Permutations by Reversals, Transpositions, Transreversals, and Block-Interchanges.
    Hao F; Zhang M; Leong HW
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1702-1711. PubMed ID: 28678711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of orthologous genes via genome rearrangement.
    Chen X; Zheng J; Fu Z; Nan P; Zhong Y; Lonardi S; Jiang T
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):302-15. PubMed ID: 17044168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fast and Exact Algorithm for the Exemplar Breakpoint Distance.
    Shao M; Moret BM
    J Comput Biol; 2016 May; 23(5):337-46. PubMed ID: 26953781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divide-and-conquer approach for the exemplar breakpoint distance.
    Nguyen CT; Tay YC; Zhang L
    Bioinformatics; 2005 May; 21(10):2171-6. PubMed ID: 15713729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple genome rearrangement by reversals.
    Wu S; Gu X
    Pac Symp Biocomput; 2002; ():259-70. PubMed ID: 11928481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general heuristic for genome rearrangement problems.
    Dias U; Galvão GR; Lintzmayer CN; Dias Z
    J Bioinform Comput Biol; 2014 Jun; 12(3):1450012. PubMed ID: 24969750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Hultman Numbers and Cycle Structures of Breakpoint Graphs.
    Alexeev N; Pologova A; Alekseyev MA
    J Comput Biol; 2017 Feb; 24(2):93-105. PubMed ID: 28045556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithms for multiple genome rearrangement by signed reversals.
    Wu S; Gu X
    Pac Symp Biocomput; 2003; ():363-74. PubMed ID: 12603042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the tractability of maximal strip recovery.
    Wang L; Zhu B
    J Comput Biol; 2010 Jul; 17(7):907-14. PubMed ID: 20632870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold filling under the breakpoint and related distances.
    Jiang H; Zheng C; Sankoff D; Zhu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1220-9. PubMed ID: 22529329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions.
    Bader M; Abouelhoda MI; Ohlebusch E
    BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.