These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19644169)

  • 1. An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series.
    Wang Z; Liu X; Liu Y; Liang J; Vinciotti V
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):410-9. PubMed ID: 19644169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering.
    Zeng N; Wang Z; Li Y; Du M; Liu X
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):1959-66. PubMed ID: 21245000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic dynamic modeling of short gene expression time-series data.
    Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.
    Alshawaqfeh M; Serpedin E; Younes AB
    BMC Genomics; 2017 Mar; 18(Suppl 3):228. PubMed ID: 28361680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of nonlinear biological phenomena modeled by S-systems.
    Mansouri MM; Nounou HN; Nounou MN; Datta AA
    Math Biosci; 2014 Mar; 249():75-91. PubMed ID: 24524881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of gene regulatory networks using S-system: a unified approach.
    Wang H; Qian L; Dougherty E
    IET Syst Biol; 2010 Mar; 4(2):145-56. PubMed ID: 20232994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models.
    Zeng N; Wang Z; Li Y; Du M; Liu X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):321-9. PubMed ID: 22025755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-based Monte Carlo filter and its applications in nonlinear stochastic differential equation models.
    Huang G; Wan J; Chen H
    Comput Biol Med; 2013 Feb; 43(2):135-43. PubMed ID: 23246109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathological tremor and voluntary motion modeling and online estimation for active compensation.
    Bo AP; Poignet P; Geny C
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):177-85. PubMed ID: 21075738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using gene expression programming to infer gene regulatory networks from time-series data.
    Zhang Y; Pu Y; Zhang H; Su Y; Zhang L; Zhou J
    Comput Biol Chem; 2013 Dec; 47():198-206. PubMed ID: 24140883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tutorial to identify nonlinear associations in gene expression time series data.
    Fujita A; Miyano S
    Methods Mol Biol; 2014; 1164():87-95. PubMed ID: 24927837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete-time adaptive backstepping nonlinear control via high-order neural networks.
    Alanis AY; Sanchez EN; Loukianov AG
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1185-95. PubMed ID: 17668670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and analysis of gene expression time-series based on co-expression.
    Möller-Levet CS; Yin H
    Int J Neural Syst; 2005 Aug; 15(4):311-22. PubMed ID: 16187406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An empirical Bayesian method for estimating biological networks from temporal microarray data.
    Rau A; Jaffrézic F; Foulley JL; Doerge RW
    Stat Appl Genet Mol Biol; 2010; 9():Article 9. PubMed ID: 20196759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks.
    Sun X; Jin L; Xiong M
    PLoS One; 2008; 3(11):e3758. PubMed ID: 19018286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to dynamic fuzzy modeling of genetic regulatory networks.
    Sun Y; Feng G; Cao J
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):263-72. PubMed ID: 21041161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series.
    Haye A; Dehouck Y; Kwasigroch JM; Bogaerts P; Rooman M
    Phys Biol; 2009 Jan; 6(1):016004. PubMed ID: 19171963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse engineering of gene networks with LASSO and nonlinear basis functions.
    Gustafsson M; Hörnquist M; Lundström J; Björkegren J; Tegnér J
    Ann N Y Acad Sci; 2009 Mar; 1158():265-75. PubMed ID: 19348648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic data assimilation using a higher moment filtering technique for restoration of gene regulatory networks.
    Hasegawa T; Mori T; Yamaguchi R; Shimamura T; Miyano S; Imoto S; Akutsu T
    BMC Syst Biol; 2015 Mar; 9():14. PubMed ID: 25890175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.