BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19644461)

  • 21. Quantitative Chromosome Conformation Capture (3C-qPCR).
    Rebouissou C; Sallis S; Forné T
    Methods Mol Biol; 2022; 2532():3-13. PubMed ID: 35867242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust detection of chromosomal interactions from small numbers of cells using low-input Capture-C.
    Oudelaar AM; Davies JOJ; Downes DJ; Higgs DR; Hughes JR
    Nucleic Acids Res; 2017 Dec; 45(22):e184. PubMed ID: 29186505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subtelomeric Chromatin Structure by Chromosome Conformation Capture (3C)-qPCR Methodology in Candida glabrata.
    López-Fuentes E; Hernández-Hernández G; De Las Peñas A; Castaño I
    Methods Mol Biol; 2022; 2542():71-89. PubMed ID: 36008657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3C-Based Chromatin Interaction Analyses.
    Kim TH; Dekker J
    Cold Spring Harb Protoc; 2018 Sep; 2018(9):. PubMed ID: 30181229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast.
    Chowdhary S; Kainth AS; Gross DS
    Methods; 2020 Jan; 170():4-16. PubMed ID: 31252061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining spatial chromatin organization of large genomic regions using 5C technology.
    van Berkum NL; Dekker J
    Methods Mol Biol; 2009; 567():189-213. PubMed ID: 19588094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Put your 3D glasses on: plant chromatin is on show.
    Rodriguez-Granados NY; Ramirez-Prado JS; Veluchamy A; Latrasse D; Raynaud C; Crespi M; Ariel F; Benhamed M
    J Exp Bot; 2016 May; 67(11):3205-21. PubMed ID: 27129951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method.
    Gheldof N; Leleu M; Noordermeer D; Rougemont J; Reymond A
    Methods Mol Biol; 2012; 786():211-25. PubMed ID: 21938629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic evaluation of chromosome conformation capture assays.
    Akgol Oksuz B; Yang L; Abraham S; Venev SV; Krietenstein N; Parsi KM; Ozadam H; Oomen ME; Nand A; Mao H; Genga RMJ; Maehr R; Rando OJ; Mirny LA; Gibcus JH; Dekker J
    Nat Methods; 2021 Sep; 18(9):1046-1055. PubMed ID: 34480151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.
    Dostie J; Richmond TA; Arnaout RA; Selzer RR; Lee WL; Honan TA; Rubio ED; Krumm A; Lamb J; Nusbaum C; Green RD; Dekker J
    Genome Res; 2006 Oct; 16(10):1299-309. PubMed ID: 16954542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years.
    Zhang X; Wang T
    Plant Cell Physiol; 2021 Dec; 62(11):1648-1661. PubMed ID: 34486654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.
    Stadhouders R; Kolovos P; Brouwer R; Zuin J; van den Heuvel A; Kockx C; Palstra RJ; Wendt KS; Grosveld F; van Ijcken W; Soler E
    Nat Protoc; 2013 Mar; 8(3):509-24. PubMed ID: 23411633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosome Conformation Capture for Research on Innate Antiviral Immunity.
    Kim YJ; Kim TH
    Methods Mol Biol; 2017; 1656():195-208. PubMed ID: 28808972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosome conformation capture carbon copy technology.
    Dostie J; Zhan Y; Dekker J
    Curr Protoc Mol Biol; 2007 Oct; Chapter 21():Unit 21.14. PubMed ID: 18265398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hi-C in Budding Yeast.
    Belton JM; Dekker J
    Cold Spring Harb Protoc; 2015 Jul; 2015(7):649-61. PubMed ID: 26134906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue- and expression level-specific chromatin looping at maize b1 epialleles.
    Louwers M; Bader R; Haring M; van Driel R; de Laat W; Stam M
    Plant Cell; 2009 Mar; 21(3):832-42. PubMed ID: 19336692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cautionary note on the use of chromosome conformation capture in plants.
    Jamge S; Stam M; Angenent GC; Immink RGH
    Plant Methods; 2017; 13():101. PubMed ID: 29177001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.