These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19644725)

  • 1. A model of hydrodynamic interaction between swimming bacteria.
    Gyrya V; Aranson IS; Berlyand LV; Karpeev D
    Bull Math Biol; 2010 Jan; 72(1):148-83. PubMed ID: 19644725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The orientation of swimming biflagellates in shear flows.
    O'Malley S; Bees MA
    Bull Math Biol; 2012 Jan; 74(1):232-55. PubMed ID: 21744179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments.
    Leshansky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051911. PubMed ID: 20365010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of bacterial flagellar bundling.
    Flores H; Lobaton E; Méndez-Diez S; Tlupova S; Cortez R
    Bull Math Biol; 2005 Jan; 67(1):137-68. PubMed ID: 15691543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The long-time dynamics of two hydrodynamically-coupled swimming cells.
    Michelin S; Lauga E
    Bull Math Biol; 2010 May; 72(4):973-1005. PubMed ID: 20013354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of the bacterial flagellar motor: response to varying viscous load.
    Adam G
    J Mechanochem Cell Motil; 1977 Dec; 4(4):235-53. PubMed ID: 112211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the effect of swimmer's head position on swimming performance using computational fluid dynamics.
    Zaïdi H; Taïar R; Fohanno S; Polidori G
    J Biomech; 2008; 41(6):1350-8. PubMed ID: 18374343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic interaction of two unsteady model microorganisms.
    Giacché D; Ishikawa T
    J Theor Biol; 2010 Nov; 267(2):252-63. PubMed ID: 20696173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional roles of the transverse and longitudinal flagella in the swimming motility of Prorocentrum minimum (Dinophyceae).
    Miyasaka I; Nanba K; Furuya K; Nimura Y; Azuma A
    J Exp Biol; 2004 Aug; 207(Pt 17):3055-66. PubMed ID: 15277560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial swarming: a re-examination of cell-movement patterns.
    Kaiser D
    Curr Biol; 2007 Jul; 17(14):R561-70. PubMed ID: 17637359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body.
    Hintsche M; Waljor V; Großmann R; Kühn MJ; Thormann KM; Peruani F; Beta C
    Sci Rep; 2017 Dec; 7(1):16771. PubMed ID: 29196650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between comoving magnetic microswimmers.
    Keaveny EE; Maxey MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041910. PubMed ID: 18517659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient shapes for microswimming: From three-body swimmers to helical flagella.
    Bet B; Boosten G; Dijkstra M; van Roij R
    J Chem Phys; 2017 Feb; 146(8):084904. PubMed ID: 28249423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swarm behavior of self-propelled rods and swimming flagella.
    Yang Y; Marceau V; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031904. PubMed ID: 21230105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cinemicrographic analysis of the movement of flagellated bacteria. I. The ratio of the propulsive velocity to the frequency of bodily rotation.
    Yoshida T; Shimada K; Asakura S
    J Mechanochem Cell Motil; 1975; 3(2):87-98. PubMed ID: 1214109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria.
    Bente K; Mohammadinejad S; Charsooghi MA; Bachmann F; Codutti A; Lefèvre CT; Klumpp S; Faivre D
    Elife; 2020 Jan; 9():. PubMed ID: 31989923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cinemicrographic analysis of the movement of flagellated bacteria. II. The ratio of the propulsive velocity to the frequency of the wave propagation along flagellar tail.
    Shimada K; Ikkai T; Yoshida T; Asakura S
    J Mechanochem Cell Motil; 1976 Mar; 3(3):185-93. PubMed ID: 932565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.