BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 19645272)

  • 1. Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations.
    Yao M; Zhang Q; Hand DW; Perram DL; Taylor R
    J Air Waste Manag Assoc; 2009 Jul; 59(7):882-90. PubMed ID: 19645272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and regeneration on activated carbon fiber cloth for volatile organic compounds at indoor concentration levels.
    Yao M; Zhang Q; Hand DW; Perram D; Taylor R
    J Air Waste Manag Assoc; 2009 Jan; 59(1):31-6. PubMed ID: 19216185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.
    Saini VK; Pires J
    J Environ Sci (China); 2017 May; 55():321-330. PubMed ID: 28477827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.
    Son HK; Sivakumar S; Rood MJ; Kim BJ
    J Hazard Mater; 2016 Jan; 301():27-34. PubMed ID: 26342148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of toluene onto activated carbon fibre cloths and felts: application to indoor air treatment.
    Lorimier C; Subrenat A; Le Coq L; Le Cloirec P
    Environ Technol; 2005 Nov; 26(11):1217-30. PubMed ID: 16335597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for the rapid determination of volatile organic compound breakthrough times for a sorbent at concentrations relevant to indoor air quality.
    Scahill J; Wolfrum EJ; Michener WE; Bergmann M; Blake DM; Watt AS
    J Air Waste Manag Assoc; 2004 Jan; 54(1):105-10. PubMed ID: 14871018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of acetone and cyclohexane onto CO
    Zhang X; Xiang W; Wang B; Fang J; Zou W; He F; Li Y; Tsang DCW; Ok YS; Gao B
    Chemosphere; 2020 Apr; 245():125664. PubMed ID: 31877458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated Indoor Volatile Organic Compound Exposure in the Niger Delta Region of Nigeria.
    Kponee KZ; Nwanaji-Enwerem JC; Fu X; Kakulu II; Weisskopf MG; Jia C
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30200602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.
    Wang G; Dou B; Zhang Z; Wang J; Liu H; Hao Z
    J Environ Sci (China); 2015 Apr; 30():65-73. PubMed ID: 25872710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of activated carbon sorbents for indoor air purification during normal and wildfire events.
    Maximoff SN; Mittal R; Kaushik A; Dhau JS
    Chemosphere; 2022 Oct; 304():135314. PubMed ID: 35709843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.
    Cheng M; Galbally IE; Molloy SB; Selleck PW; Keywood MD; Lawson SJ; Powell JC; Gillett RW; Dunne E
    Indoor Air; 2016 Apr; 26(2):219-30. PubMed ID: 25788118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of VOCs onto engineered carbon materials: A review.
    Zhang X; Gao B; Creamer AE; Cao C; Li Y
    J Hazard Mater; 2017 Sep; 338():102-123. PubMed ID: 28535479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait.
    Al-Awadi L
    J Air Waste Manag Assoc; 2018 Jan; 68(1):54-72. PubMed ID: 28829721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External capillary condensation and adsorption of VOCs onto activated carbon fiber cloth and felt.
    Fournel L; Mocho P; Fanlo JL; Le Cloirec P
    Environ Technol; 2005 Nov; 26(11):1277-87. PubMed ID: 16335603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sericin-coated polyester based air-filter for removal of particulate matter and volatile organic compounds (BTEX) from indoor air.
    Verma VK; Subbiah S; Kota SH
    Chemosphere; 2019 Dec; 237():124462. PubMed ID: 31394446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile organic compound (VOC) adsorption on material: influence of gas phase concentration, relative humidity and VOC type.
    Huang H; Haghighat F; Blondeau P
    Indoor Air; 2006 Jun; 16(3):236-47. PubMed ID: 16683942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple comparisons of organic, microbial, and fine particulate pollutants in typical indoor environments: diurnal and seasonal variations.
    Mentese S; Rad AY; Arisoy M; Güllü G
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1380-93. PubMed ID: 23362757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the substrate effect on VOC emissions from water based varnish and latex paint.
    Silva GV; Vasconcelos MT; Santos AM; Fernandes EO
    Environ Sci Pollut Res Int; 2003; 10(4):209-16. PubMed ID: 12943003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indoor exposure levels and risk assessment of volatile organic compounds in residences, schools, and offices in China from 2000 to 2021: A systematic review.
    Liu N; Bu Z; Liu W; Kan H; Zhao Z; Deng F; Huang C; Zhao B; Zeng X; Sun Y; Qian H; Mo J; Sun C; Guo J; Zheng X; Weschler LB; Zhang Y
    Indoor Air; 2022 Sep; 32(9):e13091. PubMed ID: 36168233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air exchange rates and migration of VOCs in basements and residences.
    Du L; Batterman S; Godwin C; Rowe Z; Chin JY
    Indoor Air; 2015 Dec; 25(6):598-609. PubMed ID: 25601281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.