BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19645423)

  • 1. Electrochemical charging of individual single-walled carbon nanotubes.
    Kalbac M; Farhat H; Kavan L; Kong J; Sasaki K; Saito R; Dresselhaus MS
    ACS Nano; 2009 Aug; 3(8):2320-8. PubMed ID: 19645423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between the spring force constant and the phonon energy renormalization in electrochemically doped semiconducting single-walled carbon nanotubes.
    Kalbac M; Farhat H; Kavan L; Kong J; Dresselhaus MS
    Nano Lett; 2008 Oct; 8(10):3532-7. PubMed ID: 18798684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes.
    Duan X; Son H; Gao B; Zhang J; Wu T; Samsonidze GG; Dresselhaus MS; Liu Z; Kong J
    Nano Lett; 2007 Jul; 7(7):2116-21. PubMed ID: 17567178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman doping profiles of polyelectrolyte SWNTs in solution.
    Dragin F; Pénicaud A; Iurlo M; Marcaccio M; Paolucci F; Anglaret E; Martel R
    ACS Nano; 2011 Dec; 5(12):9892-7. PubMed ID: 22092255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Hsieh YP; Farhat H; Kavan L; Hofmann M; Kong J; Dresselhaus MS
    Nano Lett; 2010 Nov; 10(11):4619-26. PubMed ID: 20939607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects.
    Fantini C; Jorio A; Souza M; Strano MS; Dresselhaus MS; Pimenta MA
    Phys Rev Lett; 2004 Oct; 93(14):147406. PubMed ID: 15524844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic and semiconducting single-walled carbon nanotubes: differentiating individual SWCNTs by their carbon 1s spectra.
    Rossouw D; Botton GA; Najafi E; Lee V; Hitchcock AP
    ACS Nano; 2012 Dec; 6(12):10965-72. PubMed ID: 23176188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the tangential mode in the Raman spectra of SWCNT bundles during electrochemical charging.
    Kalbac M; Kavan L; Dunsch L; Dresselhaus MS
    Nano Lett; 2008 Apr; 8(4):1257-64. PubMed ID: 18311937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Softening of the radial breathing mode in metallic carbon nanotubes.
    Farhat H; Sasaki K; Kalbac M; Hofmann M; Saito R; Dresselhaus MS; Kong J
    Phys Rev Lett; 2009 Mar; 102(12):126804. PubMed ID: 19392307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sexithiophene encapsulated in a single-walled carbon nanotube: an in situ Raman spectroelectrochemical study of a peapod structure.
    Kalbáč M; Kavan L; Gorantla S; Gemming T; Dunsch L
    Chemistry; 2010 Oct; 16(38):11753-9. PubMed ID: 20799304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic polymers of C(60) inside single-walled carbon nanotubes.
    Pichler T; Kuzmany H; Kataura H; Achiba Y
    Phys Rev Lett; 2001 Dec; 87(26):267401. PubMed ID: 11800854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.
    Stubrov Y; Nikolenko A; Gubanov V; Strelchuk V
    Nanoscale Res Lett; 2016 Dec; 11(1):2. PubMed ID: 26729220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes.
    Hennrich F; Krupke R; Kappes MM; Löhneysen HV
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1166-71. PubMed ID: 16108444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman and electrochemical impedance studies of sol-gel titanium oxide and single walled carbon nanotubes composite films.
    Rincón ME; Trujillo-Camacho ME; Miranda-Hernández M; Cuentas-Gallegos AK; Orozco G
    J Nanosci Nanotechnol; 2007; 7(4-5):1596-603. PubMed ID: 17450931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution.
    Kim JH; Kataoka M; Shimamoto D; Muramatsu H; Jung YC; Hayashi T; Kim YA; Endo M; Park JS; Saito R; Terrones M; Dresselhaus MS
    ACS Nano; 2010 Feb; 4(2):1060-6. PubMed ID: 20112962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.