BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19645479)

  • 1. Differential absorption of metals from soil to diverse vine varieties from the Valley of Tulum (Argentina): consequences to evaluate wine provenance.
    Fabani MP; Toro ME; Vázquez F; Díaz MP; Wunderlin DA
    J Agric Food Chem; 2009 Aug; 57(16):7409-16. PubMed ID: 19645479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin.
    Almeida CM; Vasconcelos MT
    J Agric Food Chem; 2003 Jul; 51(16):4788-98. PubMed ID: 14705914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingerprints for main varieties of argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics.
    Di Paola-Naranjo RD; Baroni MV; Podio NS; Rubinstein HR; Fabani MP; Badini RG; Inga M; Ostera HA; Cagnoni M; Gallegos E; Gautier E; Peral-Garcia P; Hoogewerff J; Wunderlin DA
    J Agric Food Chem; 2011 Jul; 59(14):7854-65. PubMed ID: 21671663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Markers of typical red wine varieties from the Valley of Tulum (San Juan-Argentina) based on VOCs profile and chemometrics.
    Fabani MP; Ravera MJ; Wunderlin DA
    Food Chem; 2013 Nov; 141(2):1055-62. PubMed ID: 23790886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead contamination in Portuguese red wines from the Douro region: from the vineyard to the final product.
    Almeida CM; Vasconcelos MT
    J Agric Food Chem; 2003 May; 51(10):3012-23. PubMed ID: 12720385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards.
    Mackenzie DE; Christy AG
    Water Sci Technol; 2005; 51(1):27-37. PubMed ID: 15771096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas.
    Son HS; Kim KM; van den Berg F; Hwang GS; Park WM; Lee CH; Hong YS
    J Agric Food Chem; 2008 Sep; 56(17):8007-16. PubMed ID: 18707121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace metals transfer during vine cultivation and winemaking processes.
    Vystavna Y; Zaichenko L; Klimenko N; Rätsep R
    J Sci Food Agric; 2017 Oct; 97(13):4520-4525. PubMed ID: 28332198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of ochratoxin A in wine and ochratoxigenic mycoflora in grapes and dried vine fruits in South America.
    Chulze SN; Magnoli CE; Dalcero AM
    Int J Food Microbiol; 2006 Sep; 111 Suppl 1():S5-9. PubMed ID: 16716424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residues of spiroxamine in grapes following field application and their fate from vine to wine.
    Tsiropoulos NG; Miliadis GE; Likas DT; Liapis K
    J Agric Food Chem; 2005 Dec; 53(26):10091-6. PubMed ID: 16366700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cold pre-fermentation treatments on the major volatile compounds of three wine varieties.
    Moreno-Pérez A; Vila-López R; Fernández-Fernández JI; Martínez-Cutillas A; Gil-Muñoz R
    Food Chem; 2013 Aug; 139(1-4):770-6. PubMed ID: 23561172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study.
    Sun X; Ma T; Yu J; Huang W; Fang Y; Zhan J
    Food Chem; 2018 Feb; 241():40-50. PubMed ID: 28958546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of ochratoxin A from contaminated red wines by repassage over grape pomaces.
    Solfrizzo M; Avantaggiato G; Panzarini G; Visconti A
    J Agric Food Chem; 2010 Jan; 58(1):317-23. PubMed ID: 19919032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace metals in wine and vineyard environment in southern Ukraine.
    Vystavna Y; Rushenko L; Diadin D; Klymenko O; Klymenko M
    Food Chem; 2014 Mar; 146():339-44. PubMed ID: 24176352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of glutathione content in grape juice and wine by high-performance liquid chromatography with fluorescence detection.
    Janes L; Lisjak K; Vanzo A
    Anal Chim Acta; 2010 Aug; 674(2):239-42. PubMed ID: 20678636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.
    Fernández K; Kennedy JA; Agosin E
    J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study.
    Lee JE; Hwang GS; Van Den Berg F; Lee CH; Hong YS
    Anal Chim Acta; 2009 Aug; 648(1):71-6. PubMed ID: 19616691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.