These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. GraphBin: refined binning of metagenomic contigs using assembly graphs. Mallawaarachchi V; Wickramarachchi A; Lin Y Bioinformatics; 2020 Jun; 36(11):3307-3313. PubMed ID: 32167528 [TBL] [Abstract][Full Text] [Related]
43. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads. Al-Okaily AA BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881 [TBL] [Abstract][Full Text] [Related]
44. An ORFome assembly approach to metagenomics sequences analysis. Ye Y; Tang H Comput Syst Bioinformatics Conf; 2008; 7():3-13. PubMed ID: 19642264 [TBL] [Abstract][Full Text] [Related]
45. Assessing the impact of exact reads on reducing the error rate of read mapping. Salari F; Zare-Mirakabad F; Sadeghi M; Rokni-Zadeh H BMC Bioinformatics; 2018 Nov; 19(1):406. PubMed ID: 30400807 [TBL] [Abstract][Full Text] [Related]
46. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix. Yoon S; Kim D; Kang K; Park WJ BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798 [TBL] [Abstract][Full Text] [Related]
48. String graph construction using incremental hashing. Ben-Bassat I; Chor B Bioinformatics; 2014 Dec; 30(24):3515-23. PubMed ID: 25183486 [TBL] [Abstract][Full Text] [Related]
49. RepLong: de novo repeat identification using long read sequencing data. Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180 [TBL] [Abstract][Full Text] [Related]
50. Improving de novo Assembly Based on Read Classification. Liao X; Li M; Luo J; Zou Y; Wu FX; Pan Y; Luo F; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):177-188. PubMed ID: 30059317 [TBL] [Abstract][Full Text] [Related]
51. Detection of structural variants involving repetitive regions in the reference genome. Lee H; Popodi E; Foster PL; Tang H J Comput Biol; 2014 Mar; 21(3):219-33. PubMed ID: 24552580 [TBL] [Abstract][Full Text] [Related]
52. Sequence assembly using next generation sequencing data--challenges and solutions. Chin FY; Leung HC; Yiu SM Sci China Life Sci; 2014 Nov; 57(11):1140-8. PubMed ID: 25326069 [TBL] [Abstract][Full Text] [Related]
53. A statistical approach designed for finding mathematically defined repeats in shotgun data and determining the length distribution of clone-inserts. Zhong L; Zhang K; Huang X; Ni P; Han Y; Wang K; Wang J; Li S Genomics Proteomics Bioinformatics; 2003 Feb; 1(1):43-51. PubMed ID: 15626332 [TBL] [Abstract][Full Text] [Related]
55. Safety in Multi-Assembly via Paths Appearing in All Path Covers of a DAG. Caceres M; Mumey B; Husic E; Rizzi R; Cairo M; Sahlin K; Tomescu AI IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3673-3684. PubMed ID: 34847041 [TBL] [Abstract][Full Text] [Related]
56. Hybrid assembly of the large and highly repetitive genome of Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360 [TBL] [Abstract][Full Text] [Related]
58. A novel algorithm for finding interspersed repeat regions. Li D; Wang Z; Ni Q Genomics Proteomics Bioinformatics; 2004 Aug; 2(3):184-91. PubMed ID: 15862119 [TBL] [Abstract][Full Text] [Related]
59. SeedsGraph: an efficient assembler for next-generation sequencing data. Wang C; Guo M; Liu X; Liu Y; Zou Q BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S13. PubMed ID: 26044652 [TBL] [Abstract][Full Text] [Related]
60. Assembler artifacts include misassembly because of unsafe unitigs and underassembly because of bidirected graphs. Rahman A; Medvedev P Genome Res; 2022 Sep; 32(9):1746-1753. PubMed ID: 35896425 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]