These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19645596)

  • 61. Bit-parallel sequence-to-graph alignment.
    Rautiainen M; Mäkinen V; Marschall T
    Bioinformatics; 2019 Oct; 35(19):3599-3607. PubMed ID: 30851095
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A fast algorithm for the construction of universal footprinting templates in DNA.
    Anderson JW; Fox KR; Niblo GA
    J Math Biol; 2006 Mar; 52(3):307-42. PubMed ID: 16328479
    [TBL] [Abstract][Full Text] [Related]  

  • 63. BOA: A partitioned view of genome assembly.
    An X; Ghosh P; Keppler P; Kurt SE; Krishnamoorthy S; Sadayappan P; Rajam AS; Çatalyürek ÜV; Kalyanaraman A
    iScience; 2022 Nov; 25(11):105273. PubMed ID: 36304115
    [No Abstract]   [Full Text] [Related]  

  • 64. Approximating the double-cut-and-join distance between unsigned genomes.
    Chen X; Sun R; Yu J
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S17. PubMed ID: 22151948
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantum algorithm for de novo DNA sequence assembly based on quantum walks on graphs.
    Varsamis GD; Karafyllidis IG; Gilkes KM; Arranz U; Martin-Cuevas R; Calleja G; Wong J; Jessen HC; Dimitrakis P; Kolovos P; Sandaltzopoulos R
    Biosystems; 2023 Nov; 233():105037. PubMed ID: 37734700
    [TBL] [Abstract][Full Text] [Related]  

  • 66. De Bruijn Superwalk with Multiplicities Problem is NP-hard.
    Kapun E; Tsarev F
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S7. PubMed ID: 23734822
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phase transition in the computational complexity of the shortest common superstring and genome assembly.
    Fernandez LA; Martin-Mayor V; Yllanes D
    Phys Rev E; 2024 Jan; 109(1-1):014133. PubMed ID: 38366408
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On a greedy approach for genome scaffolding.
    Davot T; Chateau A; Fossé R; Giroudeau R; Weller M
    Algorithms Mol Biol; 2022 Oct; 17(1):16. PubMed ID: 36309685
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Theoretical Analysis of Sequencing Bioinformatics Algorithms and Beyond.
    Medvedev P
    Commun ACM; 2023 Jul; 66(7):118-125. PubMed ID: 38736702
    [No Abstract]   [Full Text] [Related]  

  • 70. SWALO: scaffolding with assembly likelihood optimization.
    Rahman A; Pachter L
    Nucleic Acids Res; 2021 Nov; 49(20):e117. PubMed ID: 34417615
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simplitigs as an efficient and scalable representation of de Bruijn graphs.
    Břinda K; Baym M; Kucherov G
    Genome Biol; 2021 Apr; 22(1):96. PubMed ID: 33823902
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Progressive Cactus is a multiple-genome aligner for the thousand-genome era.
    Armstrong J; Hickey G; Diekhans M; Fiddes IT; Novak AM; Deran A; Fang Q; Xie D; Feng S; Stiller J; Genereux D; Johnson J; Marinescu VD; Alföldi J; Harris RS; Lindblad-Toh K; Haussler D; Karlsson E; Jarvis ED; Zhang G; Paten B
    Nature; 2020 Nov; 587(7833):246-251. PubMed ID: 33177663
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GraphAligner: rapid and versatile sequence-to-graph alignment.
    Rautiainen M; Marschall T
    Genome Biol; 2020 Sep; 21(1):253. PubMed ID: 32972461
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields.
    Steyaert A; Audenaert P; Fostier J
    BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Sequence Distance Graph framework for genome assembly and analysis.
    Yanes L; Garcia Accinelli G; Wright J; Ward BJ; Clavijo BJ
    F1000Res; 2019; 8():1490. PubMed ID: 31723420
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sequence tube maps: making graph genomes intuitive to commuters.
    Beyer W; Novak AM; Hickey G; Chan J; Tan V; Paten B; Zerbino DR
    Bioinformatics; 2019 Dec; 35(24):5318-5320. PubMed ID: 31368484
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New approaches for metagenome assembly with short reads.
    Ayling M; Clark MD; Leggett RM
    Brief Bioinform; 2020 Mar; 21(2):584-594. PubMed ID: 30815668
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Flow Procedure for Linearization of Genome Sequence Graphs.
    Haussler D; Smuga-Otto M; Eizenga JM; Paten B; Novak AM; Nikitin S; Zueva M; Miagkov D
    J Comput Biol; 2018 Jul; 25(7):664-676. PubMed ID: 29792514
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Superbubbles, Ultrabubbles, and Cacti.
    Paten B; Eizenga JM; Rosen YM; Novak AM; Garrison E; Hickey G
    J Comput Biol; 2018 Jul; 25(7):649-663. PubMed ID: 29461862
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A safe and complete algorithm for metagenomic assembly.
    Obscura Acosta N; Mäkinen V; Tomescu AI
    Algorithms Mol Biol; 2018; 13():3. PubMed ID: 29445416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.