These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 19645667)
1. Site-directed mutagenesis of cytochrome c: reactions with respiratory chain components and superoxide radical. Pepelina TY; Chertkova RV; Ostroverkhova TV; Dolgikh DA; Kirpichnikov MP; Grivennikova VG; Vinogradov AD Biochemistry (Mosc); 2009 Jun; 74(6):625-32. PubMed ID: 19645667 [TBL] [Abstract][Full Text] [Related]
2. [Role of individual lysine residues of horse cytochrome c in the formation of reactive complexes with components of the respiratory chain]. Pepelina TIu; Chertkova RV; Dolgikh DA; Kirpichnikov MP Bioorg Khim; 2010; 36(1):98-104. PubMed ID: 20386582 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Staniek K; Gille L; Kozlov AV; Nohl H Free Radic Res; 2002 Apr; 36(4):381-7. PubMed ID: 12069101 [TBL] [Abstract][Full Text] [Related]
4. Generation of superoxide by the mitochondrial Complex I. Grivennikova VG; Vinogradov AD Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117 [TBL] [Abstract][Full Text] [Related]
7. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH. Velayutham M; Hemann C; Zweier JL Free Radic Biol Med; 2011 Jul; 51(1):160-70. PubMed ID: 21545835 [TBL] [Abstract][Full Text] [Related]
8. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Raha S; McEachern GE; Myint AT; Robinson BH Free Radic Biol Med; 2000 Jul; 29(2):170-80. PubMed ID: 10980405 [TBL] [Abstract][Full Text] [Related]
9. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Bleier L; Dröse S Biochim Biophys Acta; 2013; 1827(11-12):1320-31. PubMed ID: 23269318 [TBL] [Abstract][Full Text] [Related]
10. Reprint of: Ubisemiquinone Is the Electron Donor for Superoxide Formation by Complex III of Heart Mitochondria. F Turrens J; Alexandre A; L Lehninger A Arch Biochem Biophys; 2022 Sep; 726():109232. PubMed ID: 35660297 [TBL] [Abstract][Full Text] [Related]
11. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438 [TBL] [Abstract][Full Text] [Related]
12. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Takeshige K; Minakami S Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543 [TBL] [Abstract][Full Text] [Related]
13. Chapter 26 Measurement of superoxide formation by mitochondrial complex I of Yarrowia lipolytica. Dröse S; Galkin A; Brandt U Methods Enzymol; 2009; 456():475-90. PubMed ID: 19348905 [TBL] [Abstract][Full Text] [Related]
15. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Siebels I; Dröse S Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966 [TBL] [Abstract][Full Text] [Related]
16. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain. Markevich NI; Hoek JB Biochim Biophys Acta; 2015; 1847(6-7):656-79. PubMed ID: 25868872 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. González-Flecha B; Boveris A Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis. Iñarrea P; Moini H; Han D; Rettori D; Aguiló I; Alava MA; Iturralde M; Cadenas E Biochem J; 2007 Jul; 405(1):173-9. PubMed ID: 17394422 [TBL] [Abstract][Full Text] [Related]
19. Towards the mechanisms involved in the antioxidant action of MnIII [meso-tetrakis(4-N-methyl pyridinium) porphyrin] in mitochondria. Araujo-Chaves JC; Yokomizo CH; Kawai C; Mugnol KC; Prieto T; Nascimento OR; Nantes IL J Bioenerg Biomembr; 2011 Dec; 43(6):663-71. PubMed ID: 21986957 [TBL] [Abstract][Full Text] [Related]
20. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Vinogradov AD; Grivennikova VG Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]