These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19645676)
21. The effect of luciferase and NADH:FMN oxidoreductase concentrations on the light kinetics of bacterial bioluminescence. Lavi J; Raunio R; Malkov Y; Lövgren T Biochem Biophys Res Commun; 1983 Feb; 111(1):266-73. PubMed ID: 6830592 [TBL] [Abstract][Full Text] [Related]
22. Redox compounds influence on the NAD(P)H:FMN-oxidoreductase-luciferase bioluminescent system. Vetrova EV; Kudryasheva NS; Kratasyuk VA Photochem Photobiol Sci; 2007 Jan; 6(1):35-40. PubMed ID: 17200734 [TBL] [Abstract][Full Text] [Related]
23. Activity coupling of Vibrio harveyi luciferase and flavin reductase (FRP): oxygen as a probe. Li X; Tu SC Arch Biochem Biophys; 2006 Oct; 454(1):26-31. PubMed ID: 16949542 [TBL] [Abstract][Full Text] [Related]
24. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Lei B; Tu SC Biochemistry; 1998 Oct; 37(41):14623-9. PubMed ID: 9772191 [TBL] [Abstract][Full Text] [Related]
25. Bioluminescent immunosorbent for rapid immunoassays. Térouanne B; Carrié ML; Nicolas JC; Crastes de Paulet A Anal Biochem; 1986 Apr; 154(1):118-25. PubMed ID: 3518535 [TBL] [Abstract][Full Text] [Related]
26. Expression, biochemical characterization, and mutation of a water forming NADH: FMN oxidoreductase from Lactobacillus rhamnosus. Li FL; Su WB; Tao QL; Zhang LY; Zhang YW Enzyme Microb Technol; 2020 Mar; 134():109464. PubMed ID: 32044036 [TBL] [Abstract][Full Text] [Related]
27. Affinity purification of bacterial luciferase and NAD(P)H:FMN oxidoreductases by FMN-sepharose for analytical applications. Lavi JT; Raunio RP; Stahlberg TH J Biolumin Chemilumin; 1990; 5(3):187-92. PubMed ID: 2220416 [TBL] [Abstract][Full Text] [Related]
28. [Bioluminescent method of determining picomolar amounts of nicotinamide-adenine dinucleotide using an immobilized extract of the luminescent bacterium Beneckea harveyi]. Lebedeva OV; Ugarova NN; Deĭko TV; Raĭnina EI; Makhlis TA Prikl Biokhim Mikrobiol; 1985; 21(1):114-21. PubMed ID: 3872452 [TBL] [Abstract][Full Text] [Related]
29. [Effect of quinones on enzymatic bioluminescence of NADH-dependent systems]. Kudriasheva NS; Esimbekova EN; Kudinova IIu; Kratasiuk VA; Stom DU Prikl Biokhim Mikrobiol; 2000; 36(4):474-8. PubMed ID: 10994199 [TBL] [Abstract][Full Text] [Related]
30. Immobilization of amyloglucosidase using two forms of polyurethane polymer. Storey KB; Duncan JA; Chakrabarti AC Appl Biochem Biotechnol; 1990 Mar; 23(3):221-36. PubMed ID: 2112366 [TBL] [Abstract][Full Text] [Related]
31. Studies of the control of luminescence in Beneckea harveyi: properties of the NADH and NADPH:FMN oxidoreductases. Jablonski E; DeLuca M Biochemistry; 1978 Feb; 17(4):672-8. PubMed ID: 23827 [TBL] [Abstract][Full Text] [Related]
32. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase. Jeffers CE; Tu SC Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836 [TBL] [Abstract][Full Text] [Related]
33. Silver nanoparticle (AgNPs) doped gum acacia-gelatin-silica nanohybrid: an effective support for diastase immobilization. Singh V; Ahmed S Int J Biol Macromol; 2012 Mar; 50(2):353-61. PubMed ID: 22210525 [TBL] [Abstract][Full Text] [Related]
34. Immobilization of oxalate decarboxylase to Eupergit and properties of the immobilized enzyme. Lin R; Wu R; Huang X; Xie T Prep Biochem Biotechnol; 2011; 41(2):154-65. PubMed ID: 21442551 [TBL] [Abstract][Full Text] [Related]
35. Principles for Construction of Bioluminescent Enzyme Biotests for Analysis of Complex Media. Kalyabina VP; Esimbekova EN; Torgashina IG; Kopylova KV; Kratasyuk VA Dokl Biochem Biophys; 2019 Mar; 485(1):107-110. PubMed ID: 31201626 [TBL] [Abstract][Full Text] [Related]
36. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel. Bashari M; Abbas S; Xu X; Jin Z Ultrason Sonochem; 2014 Jul; 21(4):1325-34. PubMed ID: 24582659 [TBL] [Abstract][Full Text] [Related]
37. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS. Shewale SD; Pandit AB Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436 [TBL] [Abstract][Full Text] [Related]
38. Activities of the bimodal fluorescent protein produced by Photobacterium phosphoreum strain bmFP in the luciferase reaction in vitro. Karatani H; Konaka T Photochem Photobiol; 2000 Feb; 71(2):237-42. PubMed ID: 10687400 [TBL] [Abstract][Full Text] [Related]
39. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase. Koch K; Hromic A; Sorokina M; Strandback E; Reisinger M; Gruber K; Macheroux P Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1046-1056. PubMed ID: 28499769 [TBL] [Abstract][Full Text] [Related]
40. Immobilization of amyloglucosidase onto macroporous cryogels for continuous glucose production from starch. Uygun M; Akduman B; Ergönül B; Aktaş Uygun D; Akgöl S; Denizli A J Biomater Sci Polym Ed; 2015; 26(16):1112-25. PubMed ID: 26235358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]