These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19645703)

  • 1. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories.
    Guo W; Sarkar SK; Peddada SD
    Biometrics; 2010 Jun; 66(2):485-92. PubMed ID: 19645703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-step hierarchical hypothesis set testing framework, with applications to gene expression data on ordered categories.
    Li Y; Ghosh D
    BMC Bioinformatics; 2014 Apr; 15():108. PubMed ID: 24731138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dependence in high-dimensional multiple testing problems.
    Kim KI; van de Wiel MA
    BMC Bioinformatics; 2008 Feb; 9():114. PubMed ID: 18298808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed directional false discovery rate control in multiple pairwise comparisons using weighted p-values.
    Zhao H; Peddada SD; Cui X
    Biom J; 2015 Jan; 57(1):144-58. PubMed ID: 25410394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive single-step FDR procedure with applications to DNA microarray analysis.
    Iyer V; Sarkar S
    Biom J; 2007 Feb; 49(1):127-35. PubMed ID: 17342954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis.
    Reiner-Benaim A
    Biom J; 2007 Feb; 49(1):107-26. PubMed ID: 17342953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing multiple hypotheses with skewed alternatives.
    Bansal NK; Hamedani GG; Maadooliat M
    Biometrics; 2016 Jun; 72(2):494-502. PubMed ID: 26536168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation on performance of Significance Analysis of Microarray (SAM) for the comparisons of several treatments with one control in the presence of small-variance genes.
    Lin D; Shkedy Z; Burzykowski T; Ion R; Göhlmann HW; Bondt AD; Perer T; Geerts T; Van den Wyngaert I; Bijnens L
    Biom J; 2008 Oct; 50(5):801-23. PubMed ID: 18932139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying differentially expressed genes using false discovery rate controlling procedures.
    Reiner A; Yekutieli D; Benjamini Y
    Bioinformatics; 2003 Feb; 19(3):368-75. PubMed ID: 12584122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the proportion of true null hypotheses under sparse dependence: Adaptive FDR controlling in microarray data.
    Biswas A; Chakraborty S; Baruah VJ
    Stat Methods Med Res; 2022 May; 31(5):917-927. PubMed ID: 35133933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of oligonucleotide array experiments with repeated measures using mixed models.
    Li H; Wood CL; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2004 Dec; 5():209. PubMed ID: 15626348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures.
    Lu X; Perkins DL
    BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A response to information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments.
    Peddada SD; Umbach DM; Harris SF
    BMC Bioinformatics; 2009 Dec; 10():438; author reply 438. PubMed ID: 20028515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to identify differential expression profiles of time-course gene data with Fourier transformation.
    Kim J; Ogden RT; Kim H
    BMC Bioinformatics; 2013 Oct; 14():310. PubMed ID: 24134721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How accurately can we control the FDR in analyzing microarray data?
    Jung SH; Jang W
    Bioinformatics; 2006 Jul; 22(14):1730-6. PubMed ID: 16644791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.
    Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of gene expression patterns using planned linear contrasts.
    Li H; Wood CL; Liu Y; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2006 May; 7():245. PubMed ID: 16677382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying the false discovery rate procedure based on the information theory under arbitrary correlation structure and its performance in high-dimensional genomic data.
    Rastaghi S; Saki A; Tabesh H
    BMC Bioinformatics; 2024 Feb; 25(1):57. PubMed ID: 38317067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mixture model for estimating the local false discovery rate in DNA microarray analysis.
    Liao JG; Lin Y; Selvanayagam ZE; Shih WJ
    Bioinformatics; 2004 Nov; 20(16):2694-701. PubMed ID: 15145810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On correcting the overestimation of the permutation-based false discovery rate estimator.
    Jiao S; Zhang S
    Bioinformatics; 2008 Aug; 24(15):1655-61. PubMed ID: 18573796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.