These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 19645821)

  • 1. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.
    Ghosh W; Dam B
    FEMS Microbiol Rev; 2009 Nov; 33(6):999-1043. PubMed ID: 19645821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system.
    Meyer B; Imhoff JF; Kuever J
    Environ Microbiol; 2007 Dec; 9(12):2957-77. PubMed ID: 17991026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prokaryotic sulfur oxidation.
    Friedrich CG; Bardischewsky F; Rother D; Quentmeier A; Fischer J
    Curr Opin Microbiol; 2005 Jun; 8(3):253-9. PubMed ID: 15939347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins.
    Ghosh W; Mallick S; DasGupta SK
    Res Microbiol; 2009; 160(6):409-20. PubMed ID: 19616092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lithotrophic microorganisms of the oxidative cycles of sulfur and iron].
    Karavaĭko GI; Dubinina GA; Kondrat'eva TF
    Mikrobiologiia; 2006; 75(5):593-629. PubMed ID: 17091584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.
    Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J
    ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and genetics of sulfur-oxidizing bacteria.
    Friedrich CG
    Adv Microb Physiol; 1998; 39():235-89. PubMed ID: 9328649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into the interactions of SoxV, SoxW and SoxS in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle.
    Bagchi A; Ghosh TC
    Biophys Chem; 2006 Jan; 119(1):7-13. PubMed ID: 16183190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative metabolism of inorganic sulfur compounds by bacteria.
    Kelly DP; Shergill JK; Lu WP; Wood AP
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):95-107. PubMed ID: 9049021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular ecology of a facultative swine waste lagoon.
    Goh SH; Mabbett AN; Welch JP; Hall SJ; McEwan AG
    Lett Appl Microbiol; 2009 Apr; 48(4):486-92. PubMed ID: 19243502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ecophysiology of lithotrophic sulfur-oxidizing Sphaerotilus species from sulfide springs in the Northern Caucasus].
    Gridneva EV; Grabovich MIu; Dubinina GA; Chernousova EIu; Akimov VN
    Mikrobiologiia; 2009; 78(1):89-97. PubMed ID: 19334601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thermophilic microbial communities of deep-sea hydrothermal environments].
    Miroshnichenko ML
    Mikrobiologiia; 2004; 73(1):5-18. PubMed ID: 15074034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes.
    Sander J; Engels-Schwarzlose S; Dahl C
    Arch Microbiol; 2006 Nov; 186(5):357-66. PubMed ID: 16924482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications.
    Shao MF; Zhang T; Fang HH
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1027-42. PubMed ID: 20809074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon.
    Bagchi A; Ghosh TC
    Biochem Biophys Res Commun; 2005 Sep; 335(2):609-15. PubMed ID: 16084835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemolithotrophic haloalkaliphiles from soda lakes.
    Sorokin DY; Kuenen JG
    FEMS Microbiol Ecol; 2005 May; 52(3):287-95. PubMed ID: 16329914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil.
    Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E
    ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A contemporary microbially maintained subglacial ferrous "ocean".
    Mikucki JA; Pearson A; Johnston DT; Turchyn AV; Farquhar J; Schrag DP; Anbar AD; Priscu JC; Lee PA
    Science; 2009 Apr; 324(5925):397-400. PubMed ID: 19372431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.