These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 19646266)
1. A catalytically and genetically optimized beta-lactamase-matrix based assay for sensitive, specific, and higher throughput analysis of native henipavirus entry characteristics. Wolf MC; Wang Y; Freiberg AN; Aguilar HC; Holbrook MR; Lee B Virol J; 2009 Jul; 6():119. PubMed ID: 19646266 [TBL] [Abstract][Full Text] [Related]
2. Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools. Landowski M; Dabundo J; Liu Q; Nicola AV; Aguilar HC J Virol; 2014 Dec; 88(24):14197-206. PubMed ID: 25275126 [TBL] [Abstract][Full Text] [Related]
4. Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. Bradel-Tretheway BG; Zamora JLR; Stone JA; Liu Q; Li J; Aguilar HC J Virol; 2019 Jul; 93(13):. PubMed ID: 30971473 [TBL] [Abstract][Full Text] [Related]
5. Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection. Yun T; Park A; Hill TE; Pernet O; Beaty SM; Juelich TL; Smith JK; Zhang L; Wang YE; Vigant F; Gao J; Wu P; Lee B; Freiberg AN J Virol; 2015 Jan; 89(2):1242-53. PubMed ID: 25392218 [TBL] [Abstract][Full Text] [Related]
6. Headless Henipaviral Receptor Binding Glycoproteins Reveal Fusion Modulation by the Head/Stalk Interface and Post-receptor Binding Contributions of the Head Domain. Yeo YY; Buchholz DW; Gamble A; Jager M; Aguilar HC J Virol; 2021 Sep; 95(20):e0066621. PubMed ID: 34288734 [TBL] [Abstract][Full Text] [Related]
7. Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly. Cifuentes-Muñoz N; Sun W; Ray G; Schmitt PT; Webb S; Gibson K; Dutch RE; Schmitt AP J Virol; 2017 Jul; 91(14):. PubMed ID: 28468881 [TBL] [Abstract][Full Text] [Related]
8. Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. Negrete OA; Chu D; Aguilar HC; Lee B J Virol; 2007 Oct; 81(19):10804-14. PubMed ID: 17652392 [TBL] [Abstract][Full Text] [Related]
9. Cell-Cell Fusion Assays to Study Henipavirus Entry and Evaluate Therapeutics. Monreal IA; Aguilar HC Methods Mol Biol; 2023; 2682():59-69. PubMed ID: 37610573 [TBL] [Abstract][Full Text] [Related]
10. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins. McLinton EC; Wagstaff KM; Lee A; Moseley GW; Marsh GA; Wang LF; Jans DA; Lieu KG; Netter HJ J Gen Virol; 2017 Apr; 98(4):563-576. PubMed ID: 28056216 [TBL] [Abstract][Full Text] [Related]
11. A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. Amaya M; Cheng H; Borisevich V; Navaratnarajah CK; Cattaneo R; Cooper L; Moore TW; Gaisina IN; Geisbert TW; Rong L; Broder CC Antiviral Res; 2021 Sep; 193():105084. PubMed ID: 34077807 [TBL] [Abstract][Full Text] [Related]
12. Modes of paramyxovirus fusion: a Henipavirus perspective. Lee B; Ataman ZA Trends Microbiol; 2011 Aug; 19(8):389-99. PubMed ID: 21511478 [TBL] [Abstract][Full Text] [Related]
13. Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. Porotto M; Carta P; Deng Y; Kellogg GE; Whitt M; Lu M; Mungall BA; Moscona A J Virol; 2007 Oct; 81(19):10567-74. PubMed ID: 17652384 [TBL] [Abstract][Full Text] [Related]
14. Electrostatic Interactions between Hendra Virus Matrix Proteins Are Required for Efficient Virus-Like-Particle Assembly. Liu YC; Grusovin J; Adams TE J Virol; 2018 Jul; 92(13):. PubMed ID: 29695428 [No Abstract] [Full Text] [Related]
15. Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade. Zamora JLR; Ortega V; Johnston GP; Li J; André NM; Monreal IA; Contreras EM; Whittaker GR; Aguilar HC J Virol; 2020 Sep; 94(19):. PubMed ID: 32669342 [TBL] [Abstract][Full Text] [Related]
16. The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Patch JR; Han Z; McCarthy SE; Yan L; Wang LF; Harty RN; Broder CC Virol J; 2008 Nov; 5():137. PubMed ID: 19000317 [TBL] [Abstract][Full Text] [Related]
17. Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress. Johnston GP; Contreras EM; Dabundo J; Henderson BA; Matz KM; Ortega V; Ramirez A; Park A; Aguilar HC J Virol; 2017 May; 91(10):. PubMed ID: 28250132 [TBL] [Abstract][Full Text] [Related]
18. Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Patch JR; Crameri G; Wang LF; Eaton BT; Broder CC Virol J; 2007 Jan; 4():1. PubMed ID: 17204159 [TBL] [Abstract][Full Text] [Related]
19. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus. Lee B; Pernet O; Ahmed AA; Zeltina A; Beaty SM; Bowden TA Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2156-65. PubMed ID: 25825759 [TBL] [Abstract][Full Text] [Related]
20. An enzymatic virus-like particle assay for sensitive detection of virus entry. Tscherne DM; Manicassamy B; García-Sastre A J Virol Methods; 2010 Feb; 163(2):336-43. PubMed ID: 19879300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]