These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19646451)

  • 1. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins.
    Pazy Y; Wollish AC; Thomas SA; Miller PJ; Collins EJ; Bourret RB; Silversmith RE
    J Mol Biol; 2009 Oct; 392(5):1205-20. PubMed ID: 19646451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.
    Immormino RM; Starbird CA; Silversmith RE; Bourret RB
    Biochemistry; 2015 Jun; 54(22):3514-27. PubMed ID: 25928369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two variable active site residues modulate response regulator phosphoryl group stability.
    Thomas SA; Brewster JA; Bourret RB
    Mol Microbiol; 2008 Jul; 69(2):453-65. PubMed ID: 18557815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Response Regulator CheY Reaction Kinetics by Two Variable Residues That Affect Conformation.
    Straughn PB; Vass LR; Yuan C; Kennedy EN; Foster CA; Bourret RB
    J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Analysis of Functional Variation within Protein Families: Receiver Domain Autodephosphorylation Kinetics.
    Page SC; Immormino RM; Miller TH; Bourret RB
    J Bacteriol; 2016 Sep; 198(18):2483-93. PubMed ID: 27381915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonconserved active site residues modulate CheY autophosphorylation kinetics and phosphodonor preference.
    Thomas SA; Immormino RM; Bourret RB; Silversmith RE
    Biochemistry; 2013 Apr; 52(13):2262-73. PubMed ID: 23458124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CheZ-mediated dephosphorylation of the Escherichia coli chemotaxis response regulator CheY: role for CheY glutamate 89.
    Silversmith RE; Guanga GP; Betts L; Chu C; Zhao R; Bourret RB
    J Bacteriol; 2003 Mar; 185(5):1495-502. PubMed ID: 12591865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in the chemotactic response regulator, CheY, that confer resistance to the phosphatase activity of CheZ.
    Sanna MG; Swanson RV; Bourret RB; Simon MI
    Mol Microbiol; 1995 Mar; 15(6):1069-79. PubMed ID: 7623663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet.
    Appleby JL; Bourret RB
    J Bacteriol; 1998 Jul; 180(14):3563-9. PubMed ID: 9657998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the role of electrostatic charge in activation of the Escherichia coli response regulator CheY.
    Smith JG; Latiolais JA; Guanga GP; Citineni S; Silversmith RE; Bourret RB
    J Bacteriol; 2003 Nov; 185(21):6385-91. PubMed ID: 14563873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli.
    Zhu X; Amsler CD; Volz K; Matsumura P
    J Bacteriol; 1996 Jul; 178(14):4208-15. PubMed ID: 8763950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational coupling in the chemotaxis response regulator CheY.
    Schuster M; Silversmith RE; Bourret RB
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6003-8. PubMed ID: 11353835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A link between dimerization and autophosphorylation of the response regulator PhoB.
    Creager-Allen RL; Silversmith RE; Bourret RB
    J Biol Chem; 2013 Jul; 288(30):21755-69. PubMed ID: 23760278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation.
    Immormino RM; Silversmith RE; Bourret RB
    Biochemistry; 2016 Oct; 55(39):5595-5609. PubMed ID: 27589219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM.
    Dyer CM; Dahlquist FW
    J Bacteriol; 2006 Nov; 188(21):7354-63. PubMed ID: 17050923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ.
    Zhao R; Collins EJ; Bourret RB; Silversmith RE
    Nat Struct Biol; 2002 Aug; 9(8):570-5. PubMed ID: 12080332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Position K+4 in the Phosphorylation and Dephosphorylation Reaction Kinetics of the CheY Response Regulator.
    Foster CA; Silversmith RE; Immormino RM; Vass LR; Kennedy EN; Pazy Y; Collins EJ; Bourret RB
    Biochemistry; 2021 Jul; 60(26):2130-2151. PubMed ID: 34167303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain.
    Stewart RC; Jahreis K; Parkinson JS
    Biochemistry; 2000 Oct; 39(43):13157-65. PubMed ID: 11052668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of activated CheY. Comparison with other activated receiver domains.
    Lee SY; Cho HS; Pelton JG; Yan D; Berry EA; Wemmer DE
    J Biol Chem; 2001 May; 276(19):16425-31. PubMed ID: 11279165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation and binding interactions of CheY studied by use of Badan-labeled protein.
    Stewart RC; VanBruggen R
    Biochemistry; 2004 Jul; 43(27):8766-77. PubMed ID: 15236585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.